Skip to main content

Table 2 Summary of metrics obtained for the cross-validation and test stages of the models, along with their respective optimal hyperparameters

From: Sex determination through maxillary dental arch and skeletal base measurements using machine learning

Model

Optimal hyperparameters (random_state = 24)

Cross-validation results (cv = 10)

Test data results

Logistic Regression

C: 0.3

Accuracy = 0.63

Accuracy = 0.75

max_iter: 50

Precision = 0.62

Precision = 0.75

penalty: l1

Recall = 0.62

Recall = 0.75

l1_ratio: 0.2

F1-Score = 0.62

F1-Score = 0.75

solver: liblinear

  

Gradient Boosting Classifier

n_estimators: 2000

Accuracy = 0.59

Accuracy = 0.80

learning_rate: 0.01

Precision = 0.59

Precision = 0.80

criterion: friedman_mse

Recall = 0.59

Recall = 0.80

max_depth: 5

F1-Score = 0.59

F1-Score = 0.80

loss: deviance

  

K-Nearest Neighbors

n_neighbors: 1

Accuracy = 0.75

Accuracy = 0.80

weights: uniform

Precision = 0.75

Precision = 0.80

leaf_size: 1

Recall = 0.75

Recall = 0.80

p: 5

F1-Score = 0.75

F1-Score = 0.80

Support Vector Machine

kernel: rbf

Accuracy = 0.78

Accuracy = 0.80

C: 0.9

Precision = 0.78

Precision = 0.80

gamma: auto

Recall = 0.78

Recall = 0.80

 

F1-Score = 0.77

F1-Score = 0.80

MLP Classifier

activation: relu

Accuracy = 0.73

Accuracy = 0.75

alpha: 1.0

Precision = 0.72

Precision = 0.75

hidden_layer_sizes: 1000

Recall = 0.72

Recall = 0.75

learning_rate_init: 0.1

F1-Score = 0.73

F1-Score = 0.75

max_iter: 50

  

solver: sgd

  

Decision Tree

criterion: entropy

Accuracy = 0.66

Accuracy = 0.85

max_depth: none

Precision = 0.66

Precision = 0.85

splitter: best

Recall = 0.66

Recall = 0.85

 

F1-Score = 0.66

F1-Score = 0.85

Random Forest Classifier

max_depth: 10

Accuracy = 0.70

Accuracy = 0.85

n_estimators: 200

Precision = 0.70

Precision = 0.85

min_samples_split: 2

Recall = 0.70

Recall = 0.85

min_samples_leaf: 1

F1-Score = 0.70

F1-Score = 0.85

criterion: gini

  

max_features: auto