From: Accuracy of artificial intelligence in caries detection: a systematic review and meta-analysis
Sl No | Authors Year | Total sample | Accuracy (%) | Lower 95% CI | Upper 95% CI | OR | P value |
---|---|---|---|---|---|---|---|
1 | Chen et al. 2023 [17] | 11,000 | 95.44% | 0.99 | 1.00 | 1.000 | < 0.001 |
2 | Zhu et al. 2022 [18] | 1159 | 93.61% | 0.94 | 0.97 | 0.959 | < 0.001 |
3 | Bayraktar et al. 2022 [19] | 1000 | 94.59% | 0.96 | 0.99 | 0.982 | < 0.001 |
4 | Huang et al. 2021 [20] | 748 | 95.21% | 0.98 | 1.01 | 0.997 | < 0.001 |
5 | Mao et al. 2021 [21] | 278 | 95.56% | 0.98 | 1.03 | 1.008 | < 0.001 |
6 | De Araujo Faria et al. 2021 [22] | 15 | 98.8% | 1.25 | 1.34 | 1.303 | 0.001 |
7 | Vinayahalingam et al. 2021 [25] | 500 | 87.0% | 0.36 | 0.39 | 0.381 | 0.046 |
8 | Moran et al 2021 [27] | 112 | 73.3% | 0.046 | 0.058 | 0.052 | < 0.001 |
9 | Lian et al 2021 [28] | 1160 | 98.6% | 1.45 | 1.47 | 1.469 | < 0.001 |
10 | Zheng et al 2021 [29] | 844 | 82.0% | 0.29 | 0.30 | 0.300 | < 0.001 |
11 | Geetha et al 2020 [33] | 145 | 97.1% | 1.21 | 1.28 | 1.246 | < 0.001 |
12 | Cantu et al 2020 [34] | 3293 | 80.0% | 0.30 | 0.31 | 0.312 | < 0.001 |
13 | Lee et al 2018 [36] | 3000 | 89.0% | 0.47 | 0.48 | 0.479 | 0.080 |
14 | Srivastava et al 2017 [37] | 3000 | 80.5% | 0.29 | 0.30 | 0.303 | < 0.001 |