Skip to main content

Table 6 Characteristics of overall specificity of AI in caries detection

From: Accuracy of artificial intelligence in caries detection: a systematic review and meta-analysis

Sl No

Authors

Year

N

Specificity (%)

Specificity

95% CI

Specificity

OR

1

Chen et al., 2023 [17]

11,000

95.47%,

0.94, 0.96

4.88 (4.26,5.66)

2

Bayraktar et al., 2022 [19]

1000

98.19%,

0.97, 0.99

54.25 (32.33, 99.0)

3

Huang et al., 2021 [20]

748

89.83%

0.88, 0.92

8.83 (7.33, 11.50)

4

Vinayahalingam et al. 2021 [25]

500

88.0

0.85, 0.91

7.33 (5.67, 10.11)

5

Zheng et al., 2021 [29]

844

82.0

0.79, 0.84

4.56 (3.76, 5.25)

6

Devlin et al.,:2021 [31]

24

11%

0.06, 0.16

0.12 0(.06, 0.19)

7

Cantu et al., 2020 [34]

3293

83.0

0.81, 0.85

4.89 (4.26, 5.77)

  1. Overall OR: 5.20, 95% CI: 2.69, 12.25 Weighted Mean Specificity: Approximately 87.90%; Q Statistic for Heterogeneity: 144,926.65, I2: 96.03%; p-value: < 0.001