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Abstract
Background: Osteoporosis may present a risk factor in achievement of osseointegration because
of its impact on bone remodeling properties of skeletal phsiology. The purpose of this study was
to evaluate micro-morphological changes in bone around titanium implants exposed to mechanical
and electrical-energy in osteoporotic rats.

Methods: Fifteen 12-week old sprague-dowley rats were ovariectomized to develop
osteoporosis. After 8 weeks of healing period, two titanium implants were bilaterally placed in the
proximal metaphyses of tibia. The animals were randomly divided into a control group and
biophysically-stimulated two test groups with five animals in each group. In the first test group, a
pulsed electromagnetic field (PEMF) stimulation was administrated at a 0.2 mT 4 h/day, whereas
the second group received low-magnitude high-frequency mechanical vibration (MECHVIB) at 50
Hz 14 min/day. Following completion of two week treatment period, all animals were sacrificed.
Bone sites including implants were sectioned, removed en bloc and analyzed using a microCT unit.
Relative bone volume and bone micro-structural parameters were evaluated for 144 µm wide peri-
implant volume of interest (VOI).

Results: Mean relative bone volume in the peri-implant VOI around implants PEMF and MECHVIB
was significantly higher than of those in control (P < .05). Differences in trabecular-thickness and -
separation around implants in all groups were similar (P > .05) while the difference in trabecular-
number among test and control groups was significant in all VOIs (P < .05).

Conclusion: Biophysical stimulation remarkably enhances bone volume around titanium implants
placed in osteoporotic rats. Low-magnitude high-frequency MECHVIB is more effective than PEMF
on bone healing in terms of relative bone volume.
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Background
Implant designs and treatment protocols are continuously
evolving to promote osseointegration and the clinical suc-
cess of oral implants. While many oral implant systems
have been designed thus far to ameliorate biologic host
response, biomechanical needs, which essentially domi-
nate functioning has not been profoundly recognized [1].
To date, some methods of applying biophysical stimuli to
implants such as electrical stimulation [2-4], pulsed elec-
tromagnetic fields (PEMF) [5-7], and mechanical vibra-
tion (MECHVIB) [8] have been tested for promotion of
fracture healing and tissue differentiation at the bone-
implant interface [9,10]. It is unfortunate that these exper-
imental approaches have not been used to derive any ther-
apeutic instrument coupled with an application schedule
for oral/orthopedic implants so far.

The application of static and pulsed magnetic fields have
been demonstrated to promote bone formation at sites of
injury, such as fracture [11]. In the context of implants,
magnetic fields under 10 mT have been shown to increase
cell attachment and proliferation on titanium implant
surfaces [12]. A study in the rat femur also showed that
application of PEMF increased bone contact ratios of
implants and that the applied dose had a critical role on
bone apposition [7]. Under serum-free conditions,
mechanical stimulation by intermittent hydrostatic com-
pression has been demonstrated to increase sulfate con-
tent mineralization of calcifying cartilage of fetal long
bone rudiments [13]. The application of MECHVIB have
shown that daily 1 Hz/100-sec regimen led to 28% bone
ingrowth increase and at 20 Hz, the amount of ingrowth
increased to 69% [8]. In addition, another study demon-
strated that the intraosseous stability of implants sub-
jected to direct 3 Hz mechanical vibration with a force of
5 N for 1800 cycli for 6 weeks were improved [14] Indeed,
application of low-amplitude, high frequency mechanical
stimuli seems very attractive from a therapeutic point of
view to promote osseointegration [15], as the anabolic
effects of low-magnitude mechanical signals have already
been demonstrated on bone [16]. Further the risk of soft
and hard tissue damage will be avoided at such low ampli-
tudes, and the noninvasive and nonpharmacologic nature
of the technique could improve the well-being of the
patients during treatment. Nevertheless, current limita-
tions of these approaches, i.e., long application sessions
for PEMF and possible direct mechanical stimulation of
implants via intraoral mechanical-shaking devices do not
virtually seem feasible.

Osteoporosis leads to decrease in bone density and bone-
implant contact ratio of implants. A study has shown that
transmitted MECHVIB could increase density of load-
bearing bones in osteoporotic women [17]. In search of
ways to promote histodynamics of tissue differentiation

and biomechanical potential of oral implants in oste-
oporotic women, it was hypothesized that using transmit-
ted MECHVIB could facilitate application of biophysical
stimuli to the critical area [17,18] and its user-friendly
nature could potentially be used for therapeutic applica-
tion. In addition, it was assumed that the outcome of
MECHVIB could be superior to PEMF in terms of bone
response. The purpose of this study was, therefore, to
compare micro-morphologic changes in bone around
implants subjected to PEMF and transmitted (indirect)
low-magnitude high-frequency MECHVIB in osteoporotic
rats.

Materials and methods
Animals, care and ovariectomy
The experiments were undertaken in 15 locally-bred 12-
week old Sprague-Dowley female rats. The animals were
cared for according to the policies and principles estab-
lished by the Animal Welfare Act and the NIH Guide for
Care and Use of Laboratory Animals (publication # 86–
23). The surgical and experimental protocols for the ani-
mals were approved by the ethical committee of the ani-
mal research facility of Hacettepe University (2004/45-9).
During the entire test period, the animals were kept in
rooms illuminated from 07:00 to 19:00 hours (12 h light/
12 h dark cycle), maintained at 21–23°C, and had full
access to low-calcium (0.1 %) powdered diet, prepared
according to AIN-93M prescription, and water ad libitum.
All surgical procedures were performed under general
anesthesia using a mixture of ketamin (Ketalar, Parke-
Davis; 50 mg/kg i.m.) and xylazine (Rompun, Bayer; 15
mg/kg i.m.). Following surgery, each animal was kept in a
25°C incubator until it regained consciousness.

During bilateral ovariectomy, the hair at the back of the
anesthetized animals was shaved and the skin disinfected
with 70% ethanol. The overiectomy of the animals were
undertaken by an experienced gynecologist. A dorsal mid-
line incision was made through the skin at the level of
both kidneys. The exposed ovaries through the thin mus-
cle wall by retracting the skin laterally toward either side
were pulled into the incision and excised after the ligation
of the upper horn of the uterus [19,20]. Following com-
pletion of surgery, facia and skin were sutured in layers.
Before the experiments and after 4 weeks of recovery and
adaptation period, induction of osteoporosis was verified
by measuring the level of serum alkaline phosphatase
(ALP) in the blood collected randomly from 5 animals
(Table 1). An increase in ALP values was accepted as
induction of osteoporosis [21]. Quantative determination
of ALP was undertaken by regular serum ALP biochemical
analyses using ALP liquid acc to IFCC using Roche/
Hitachi 904/911/912/9217/MOD P/D: ACN 158 Ana-
lyzer. The test principle is based on colorimetric assay in
accordance with a standardized method:
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1. Sample and addition of 2-Amino-2-methyl-1-propa-
nol: 1.12 mol/L, pH 10.44 (30°C);magnesium acetate:
2.49 mmol/L; zinc sulfate: 0.50 mmol/L; N-(2-hydroxye-
thyl)-ethylenediamine triacetic acid: 2.49 mmol/L

2. Addition of p-Nitrophenyl phosphate: 99.5 mmol/L;
pH 8.50 (25°C); preservatives.

In the presence of magnesium and zinc ions, p-nitrophe-
nyl phosphate is cleaved by phosphates into phosphate
and p nitrophenol. The p nitrophenol is released propor-
tional to the ALP activity and is measured photometri-
cally.

Implants and surgery
A total of 30 cylindrical implants (Ø 1 mm × 5 mm) were
obtained from a commercially-pure titanium rod (99.6%;
Goodfellow Cambridge Ltd., Huntingdon, England). The
implants were washed in ultrasonic deionized water, then
further in trichloroethylene (99.5 %) and ethanol (70%),
and sterilized before tests [22]. During surgery, both cor-
tices of the tibia were perforated with low rotational speed
under constant saline cooling with a surgical drill having
a diameter smaller than the implant's diameter. The
rationale behind this approach was to achieve good pri-
mary stability of the cylindrical implants. Two implants
were placed bilaterally placed in the proximal metaphyses
of tibia. The flaps were closed with resorbable sutures
(Vicryls 3-0, Ethicon GmbH, Norderstadt, Germany) and
left to heal for 1 week.

Test groups and application of biophysical stimuli
Upon placement of the implants, the animals were ran-
domly divided into three groups. Group 1 served as con-
trol. In Group 2, PEMF stimulation was administrated at
0.2 mT 4 h/day for the implants [7] (Fig. 1). The custom-
made PEMF delivery device was fabricated at the Depart-
ment of Electrical and Electronics Engineering of Hacet-
tepe University and tested for accuracy using hall effect
gauss/tesla meter (Sypris F.W. Bell Model 5080, Florida,
USA) having 1% accuracy in measurement range. In
Group 3, low-magnitude high-frequency MECHVIB at 5

N/50 Hz 14 min/day was applied to the implants, while
each animal was set on a mechanical vibrating plate
(Vibratore Shaker 6, Carlo Degiorgi, Milano, Italy) with
plexiglass borders to keep the test animal within the test
zone during the therapeutic stimulation period (Fig. 2).
The mechanical vibrating plate provides a barely percepti-
ble stimulus, which does not alter animal behavior. This
application allowed a ground-based whole body applica-
tion through the hindfeets of the animal contacting the
vibrating plate [17,18]. In addition, this technique allows
the animal to move freely on the vibrating plate [18]. After
14 days, all animals were sacrificed and the tibia of each
animal was removed en bloc and kept in physiologic saline
maintained at 21–23°C.

Micro-morphologic evaluation of bone around implants
Each specimen was subjected to micro-tomographic scan-
ning [23] using desktop MicroCT (µCT40, ScancoMedical,
Bassersdorf, Switzerland) with a resolution of 16 × 16 × 16
µm3. The specimen were scanned with up to 320 trans-
verse slices, where each slice consisted of 1024 × 1024 pix-
els and followed by off-line reconstruction. Prior to
micro-morphologic analyses, transverse slices cervically
and apically resting in cortical bone were discarded. Three
longitudinal volume of interest (VOI) each with 48 µm-
thick (3 voxels × 16 µm resolution) were nominally
defined, and consecutively numbered 1 to 3 starting from
the implant surface (Fig. 3). The resulting images were
then segmented by using different thresholds for bone
and implant [24]. The specific thresholds for titanium and
bone were determined by superimposing segmented over
original grayscale images.

The relative bone volume (BV/TV: %) and micro-morpho-
metric bone parameters including trabecular thickness
(Tb.Th: mm), trabecular separation (Tb.Sp: mm) and

p-nitrophenyl phosphate H O phosphate p nitrophenolALP+  → +2

Fabricated custom-made device to deliver PEMF stimulation on osteoporotic ratsFigure 1
Fabricated custom-made device to deliver PEMF stimulation 
on osteoporotic rats.

Table 1: ALP levels (U/L) before and after ovariectomy in 
randomly selected 5 animals.

Animal BO AO

#1 72 285
#2 76 305
#3 87 298
#4 78 312
#5 85 264

BO: Before ovariectomy; AO: after ovariectomy
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trabecular number (Tb.N: 1/mm) were separately calcu-
lated for each VOI. Morphometric indices, which can be
directly determined from the binarized VOI, are the bone
volume density (BV/TV), which is a measure of the vol-
ume of the bone trabeculae relative to the total volume of
the VOI, and the trabecular number (Tb.N). From these
directly determined indices, other indices are derived such
as the trabecular thickness (Tb.Th), the trabecular separa-
tion (Tb.Sp) [25]. The correlation between structural
parameters obtained by micro-CT and conventional histo-
morphometry has been investigated to determine which
micro-CT parameter is most closely related to oste-
oporotic fracture [26]. It has been ascertained that BV/TV,
3D-Tb.Th and 3D-Tb.N were correlated with those values
on conventional histomorphometry. Therefore, trabecu-
lar bone parameters gained from micro-CT scanning in
this study seems to provide valuable information.

Statistical analysis
The data of each test group were compared with one-way
analysis of variance (ANOVA) at a confidence level set at
95% and further with Post Hoc Tests (LSD) at 95% to
determine different groups.

Results
3-D microCT view of three VOIs around control, PEMF-
stimulated, and MechV-stimulated implants are presented
in Fig 4. Descriptive statistics of BV/TV, Tb.Th and Tb.Sp,
and Tb.N are presented in Tables 2, 3, 4, 5 and Post Hoc
Test (LSD) comparisons between groups are shown in
Table 6. ANOVA of BV/TV revealed a significant difference
among test and control groups (p = 0.000) in vicinities
VOI-1, VOI-2 and VOI-3. The peri-implant relative bone
volume around MECHVIB-stimulated implants were
higher than control and PEMF-stimulated implants (p =
0.000), whereas similar values were obtained for the latter
two groups (P > .05) (Table 2). ANOVA of morphologic
evaluations revealed that Tb.Th and Tb.Sp around
implants in all groups were similar (P > .05) (Table 3 and
4, respectively). The difference in Tb.N among test and
control groups was significant in all VOIs (P < .05). Tb.N
around MECHVIB-stimulated implants was higher than
control and PEMF-stimulated implants (P < .05), and sim-
ilar around control and PEMF-stimulated implants (P >
.05) in all VOIs (Table 5).

Table 2: ANOVA of peri-implant relative bone volume (BV/TV: %) around implants of test and control groups (n = 15).

p Group Mean Std. 
Deviation

Std. Error 95% Confidence interval 
for mean

Minimum Maximum

Lower 
Bound

Upper 
Bound

VOI-1 0.000 Control 4.0 0.002 0.0007 0.002 0.006
MECHVIB 15.5 0.005 0.001 0.113 0.196 0.083 0.225

PEMF 7.0 0.002 0.0007 0.005 0.009 0.049 0.123
VOI-2 0.000 Control 22.4 0.008 0.002 0.162 0.286 0.121 0.370

MECHVIB 61.4 0.216 0.006 0.459 0.769 0.358 0.950
PEMF 34.3 0.007 0.002 0.287 0.339 0.220 0.509

VOI-3 0.000 Control 17.0 0.005 0.001 0.128 0.211 0.084 0.265
MECHVIB 47.8 0.20 0.006 0.334 0.621 0.246 0.793

PEMF 26.5 0.008 0.002 0.207 0.322 0.180 0.447

Plexiglass bordered vibrating plate used to administer mechanical low-magnitude high-frequency to osteoporotic ratsFigure 2
Plexiglass bordered vibrating plate used to administer 
mechanical low-magnitude high-frequency to osteoporotic 
rats.

3a and 3bFigure 3
3a and 3b. 3-D microCT view of a titanium implant (a) and 
illustration of defined peri-implant VOIs (b).)
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Discussion
The present study was designed to gain insight into micro-
morphologic changes in bone around biophysically-stim-
ulated implants in an animal study. In the present study,
the rationale behind using ovariectomized rats was to
explore the effect of MECHVIB and PEMF stimulation on
bone micromorphology around titanium implants placed
in metabolically compromised bone condition in terms of
the possible worst case in bone to undertake the study
[27]. Unlike previous studies [8] low-magnitude high-fre-
quency MECHVIB was delivered using a "transmitted"
approach, as this could facilitate administration of
mechanical signals in a user-friendly nature and improve
patients comfort. Indeed, the results of the present study
show that low-magnitude high-frequency MECHVIB
could transmit through bone [17], reach the implant, and
improve osteogenic response in the vicinity of implants.
The increased peri-implant relative bone volume (BV/TV)
around MECHVIB-stimulated implants clearly shows that
a transmitted application of 5 N/50 Hz for 14 min/day for
2 weeks improves trabecular bone, which may essentially

refer to improvement of implant anchorage and stability.
Moreover, it is well-known that mechanical signals have a
pronounced influence on the development and differenti-
ation of mesenchymal tissues [28] and that the magni-
tude, frequency, and the rate of experienced strain appear
as important interrelated determinants of skeletal differ-
entiation. Therefore, the regimen of MECHVIB used in the
present study, probably fall into "species-independent"
band of low-amplitude strains (< 500 µε) [8] in bone that
act as a "growth factor"[28]. Since very small magnitudes
of physiologic strains have been shown to increase bone
mineral content and induce osteogenesis [8,11], and the
direction of bending and axial loading does not have any
effect on course of remodelling [29], artificial loading of
implants by means of transmitted MECHVIB could poten-
tially ameliorate bone-implant interface at early stages of
function [15].

PEMF have been demonstrated to promote bone
ingrowth into titanium and hydroxyapatite-coated
implants, but not into tricalcium phosphate implants

Table 4: Descriptive statistics of trabecular-separation (mm) around implants of test and control groups (n = 15).

p Group Mean Std. 
Deviation

Std. Error 95% Confidence interval 
for mean

Minimum Maximum

Lower 
Bound

Upper 
Bound

VOI-1 0.161 Control 0.546 0.254 0.008 0.363 0.728 0.253 0.938
MECHVIB 0.530 0.221 0.007 0.372 0.688 0.106 0.821

PEMF 0.718 0.229 0.007 0.554 0.882 0.402 1.065
VOI-2 0.134 Control 0.572 0.249 0.007 0.393 0.750 0.303 0.918

MECHVIB 0.521 0.204 0.006 0.375 0.668 0.122 0.803
PEMF 0.725 0.225 0.007 0.563 0.886 0.412 1.046

VOI-3 0.216 Control 0.573 0.204 0.006 0.426 0.720 0.365 0.861
MECHVIB 0.474 0.168 0.005 0.354 0.595 0.190 0.735

PEMF 0.634 0.222 0.007 0.475 0.793 0.334 0.950

Table 3: ANOVA of trabecular-thickness (mm) around implants of test and control groups (n = 15).

p Group Mean Std. 
Deviation

Std. Error 95% Confidence interval 
for mean

Minimum Maximum

Lower 
Bound

Upper 
Bound

VOI-1 0.997 Control 0.140 0.005 0.001 0.100 0.180 0.080 0.226
MECHVIB 0.141 0.002 0.008 0.121 0.161 0.105 0.178

PEMF 0.142 0.005 0.001 0.104 0.179 0.090 0.260
VOI-2 0.655 Control 0.130 0.004 0.002 0.009 0.165 0.072 0.218

MECHVIB 0.147 0.002 0.009 0.125 0.168 0.105 0.192
PEMF 0.133 0.004 0.001 0.100 0.166 0.082 0.236

VOI-3 0.752 Control 0.188 0.005 0.002 0.149 0.227 0.114 0.288
MECHVIB 0.198 0.005 0.002 0.162 0.234 0.133 0.278

PEMF 0.180 0.005 0.002 0.139 0.220 0.110 0.296
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[6,7,30]. However, the outcome of transmitted applica-
tion of 5 N/50 Hz for 14 min/day being higher than
PEMF-stimulation implies that micro-morphologic prop-
erties of bone around implants is not higher than MECH-
VIB by administration of 0.2 mT 4 h/day PEMF [7].
Nevertheless, we should note that bone response to differ-
ent doses of PEMF could lead to different results. Because
it was not the core of the present study to explore the most
osteogenic dose of PEMF, a dose of 0.2 mT 4 h/day, which
had been shown to increase bone contact ratio and bone
area ratio around implants were used [7]. Moreover, the
duration of application seems as an important factor for
bone response [6] and long application sessions for PEMF
in the context of stimulating implants could inherently
make the technique unpleasant for the patient, regardless
of the dose administered. Therefore, not only the bone
structural response but also the nature of PEMF seems
rather weak in comparison to transmitted MECHVIB.

MicroCT with a limit of approximately 10 µm, provides
the best resolution and has therefore become the imaging
modality of choice for evaluation of trabecular bone in
research over the past decade [25]. Using microCT, the
interrelationship of mechanical and microstructural prop-
erties of trabecular bone is important for better under-
standing the consequences of trabecular remodeling. In
the present study, increased peri-implant relative bone
volume (BV/TV) and higher trabecular number were

found around MECHVIB-stimulated implants, which
imply that the stiffness of the tissue in the vicinity of the
implants had increased. However, MECHVIB was unable
to increase trabecular thickness and/or decrease trabecular
separation. Consequently, trabecular thickness and sepa-
ration around implants in all groups was similar. A reduc-
tion of trabecular thickness or increase in trabecular
separation could have indicated decrease in mechanical
properties of bone around the implants. The lack of
increase in trabecular thickness and separation in test
groups could be related to the dose administered, the
duration of the experiment or both, but do not necessarily
refer to the weakness of the techniques used to administer
biophysical stimuli. Further studies are required to gain
insight into structural and biomechanical characterization
of bone around biophysically-stimulated implants.
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Table 6: Post Hoc Test (LSD) comparisons between groups.

BV/TV Tb.N

VOI-1 VOI-2 VOI-3 VOI-1 VOI-2 VOI-3

Control-
MECHVIB

0.00 0.00 0.00 0.002 0.021 0.003

Control-PEMF 0.117 0.071 0.113 0.832 0.894 0.617
MECHVIB-PEMF 0.00 0.00 0.001 0.004 0.015 0.009

Table 5: ANOVA of trabecular-number (1/mm) around implants of test and control groups (n = 15).

p Group Mean Std. 
Deviation

Std. Error 95% Confidence interval 
for mean

Minimum Maximum

Lower 
Bound

Upper 
Bound

VOI-1 0.003 Control 2.027 0.830 0.262 1.432 2.621 1.305 3.884
MECHVIB 3.170 0.734 0.244 2.615 3.744 1.535 4.181

PEMF 2.09 0.636 0.201 1.642 2.552 1.083 3.162
VOI-2 0.025 Control 2.214 0.786 0.248 1.651 2.777 1.413 3.846

MECHVIB 3.014 0.716 0.226 2.502 3.527 1.730 3.622
PEMF 2.170 0.676 0.213 1.687 2.654 1.176 3.381

VOI-3 0.006 Control 2.051 0.576 0.182 1.638 2.463 1.479 3.259
MECHVIB 2.803 0.406 0.128 2.512 3.094 1.826 3.234

PEMF 2.166 0.527 0.166 1.788 2.543 1.258 2.996
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