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Abstract

Background: Hyperspectral imaging (HSI) is a promising non-contact approach to tissue diagnostics, generating
large amounts of raw data for whose processing computer vision (i.e. deep learning) is particularly suitable. Aim of
this proof of principle study was the classification of hyperspectral (HS)-reflectance values into the human-oral
tissue types fat, muscle and mucosa using deep learning methods. Furthermore, the tissue-specific hyperspectral
signatures collected will serve as a representative reference for the future assessment of oral pathological changes
in the sense of a HS-library.

Methods: A total of about 316 samples of healthy human-oral fat, muscle and oral mucosa was collected from 174
different patients and imaged using a HS-camera, covering the wavelength range from 500 nm to 1000 nm. HS-raw
data were further labelled and processed for tissue classification using a light-weight 6-layer deep neural network
(DNN).

Results: The reflectance values differed significantly (p < .001) for fat, muscle and oral mucosa at almost all
wavelengths, with the signature of muscle differing the most. The deep neural network distinguished tissue types
with an accuracy of > 80% each.

Conclusion: Oral fat, muscle and mucosa can be classified sufficiently and automatically by their specific HS-
signature using a deep learning approach. Early detection of premalignant-mucosal-lesions using hyperspectral
imaging and deep learning is so far represented rarely in in medical and computer vision research domain but has
a high potential and is part of subsequent studies.
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Background
The detection of pathological tissue changes at the
macroscopic and microscopic level is one of the founda-
tions of any diagnosis of disease. However, the starting
point for any microscopic examination and assessment
is the collection of tissue samples. Depending on the
aetiology and the affected body region, the precision of
diagnosis often differs depending on the invasiveness of
sample collection. For example, the gold standard for
diagnosis of suspicious oral lesions still consists of inci-
sion biopsy with subsequent histopathological
examination.
However, this yields disadvantages such as invasive-

ness and cost intensity. Aiming for a less or non-invasive
diagnosis, different procedures (e.g. 1brush biopsy [1–3],
2in-vivo staining with toluidine blue or 5-aminolevulinic
acid or the use of 3tissue autofluorescence [4, 5]) have
been developed during the last years, showing sensitiv-
ities of 191 and 391% (77 to 97%) as well as specificities
of 191 and 358% (22 to 87%) [6] and providing limited
applicability to multifocal lesions with an increased false
negative rate [7]. The abovementioned methods have
not shown a demonstrable improvement in early cancer
detection which is reflected in a consistently high inci-
dence rate of advanced oral squamous cell carcinoma
(OSCC). A prerequisite for microscopic assessment of
malignancy is the recognition of the physiological status
and discrimination against different types of tissue from
and to each other. HSI is a promising non-invasive and
non-ionizing technique that supports rapid acquisition
and analysis of diagnostic information in several fields of
clinical medicine [8–13]. For life sciences, the various
applications of HSI (monitoring of wound healing [14],
perfusion monitoring of microvascular flaps [15], assess-
ment on in-sano resection of oesophageal and oropha-
ryngeal carcinomas [16, 17]) have already been
successfully demonstrated. HSI includes conventional
and spectroscopic methods to obtain both spatial and
spectral image information far beyond > 740 nm [18].
Each pixel is assigned a specific vector of radiation
values which depends on the chemical material compos-
ition of the corresponding localized pixel. This results in
large amounts of data, which, however, enables auto-
mated tissue recognition through the implementation of
machine learning (ML) as an outstanding method that
enables researchers to recognize patterns and regularities
in increasingly complex data automatically. Modern ap-
proaches like deep learning (DL) enlarge origin proce-
dures of ML and move to more complex modelling. As
a result, the explicit formulation of rules for high dimen-
sional data can be avoided [19]. DL has become a popu-
lar tool in medical data analysis by attaining great
achievements in tasks like tissue classification [20, 21] or
cancer segmentation [22, 23]. Rapid developments in

computer hardware and algorithms have accelerated the
success of DL, typically implemented with deep neural
networks (DNN) architectures [24, 25]. In medicine DL
assists in analysing HSI as a result of the promising non-
contact, optical image modality [26–29]. Since we be-
lieve that the differentiation of pathological tissue
changes, similar to the assessment of blood parameters,
is only possible on the basis of a “healthy” standard, the
aim of this study was, for the first time, to create a rep-
resentative HSI data collection of healthy human fat,
muscle and oral mucosa, which will serve as a reference
library for the assessment of pathological tissue condi-
tions by processing their spectral characteristics with
deep learning methods.

Methods
Tissue samples
In this prospective, non-randomized experimental study,
human excess tissue samples were intraoperatively taken
and scanned via HSI. The study was approved by the
local ethic committee of Rhineland-Palatinate (registra-
tion number: 2020–14,952) and was conducted in ac-
cordance with the protocol and in compliance with the
moral, ethical and scientific principles governing clinical
research as set out in the Declaration of Helsinki of
1975 as revised in 1983. The tissue types examined were
transverse muscles, fat and mucosa from oral sites
(cheek, vestibule, floor of mouth as well as hard and soft
palate). These are the tissue structures most frequently
exposed during surgical procedures in the head and neck
area. Tissue samples that were macroscopically damaged
by the use of bipolar and/or monopolar caustics were
excluded from the study. To avoid measurement errors
due to blood residues, the tissue samples were washed in
a 0.9% saline solution before the examination.

Hyperspectral cube processing
Briefly, HSI is based on the assessment of contiguous
spectra (i.e. light of different wavelengths) individually
re-emitted by molecules, whereby the molecule-specific
re-emitted wave spectrum is generated on the basis of
the light spectrum of the halogen spotlights initially
emitted for examination. The HS cubes were acquired
using a TIVITA Tissue system (Diaspective Vision
GmbH, Pepelow, Germany), composed with a 120W
halogen illumination source and a radiometrically cali-
brated 32-bit complementary metal-oxide semicon-
ductor spectrometer capturing images at a resolution of
480 × 640 pixels. Spatial resolution of the CMOS sensor
is 22 μm. The hyperspectral cube contains 100 spectral
bands, ranging from 500 nm to 1000 nm with a 5 nm
sampling interval and illustrates just a tissue sample be-
longs to one class. In order to provide training data, 316
tissue samples from 174 patients in total were taken,
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scanned via HSI, inspected histologically and assigned to
the examination classes fat, muscle and oral mucosa.
The hyperspectral images for the inspected and classified
tissue samples were normalized at each wavelength. For
accurate and reproducible measurements, the standard
measuring distance was 47.5 cm, ensured by two separ-
ate indicator lasers (red laser crosshairs and green laser
dot) in an overlapped position in which the green laser
dot lies in the centre of the red crosshairs (App. 1.) For
image analysis, the camera-specific software package
(TIVITA™ Suite) was used [14]. After that, overexposure
effects were removed and the arithmetic mean of 7 to 8
manually positioned circular regions of interest (ROIs)
with a radius of 5 pixels, each distributed across the tis-
sue sample, were calculated to keep the local proximity
(Fig. 1). The arithmetic mean corresponded to the re-
corded wavelength-specific reflectance values of the
ROIs per tissue sample. A radius of 5 pixels has proven
to be suitable for placing at least five ROIs on the speci-
mens’ surface. ROIs were placed at different positions
whereby its number depended to the surface geometry
with ROIs along the border and at least one ROI in the
specimens’ centre whenever possible to achieve a homo-
geneous distribution of the measured area (Fig. 2). The
ROIs, named numeric patches, are distributed equally
over the tissue sample. To further increase the amount
of data, each individual ROI per tissue sample was evalu-
ated as an individual sample in the sense of data

augmentation (image subdivision). The classification in
this study was conducted using a deep neural network
built from scratch using H2O Flow (H2O.ai, version
3.32.1.1, for Microsoft Windows, Open source). For run-
ning the experiments, a high-performance notebook op-
erating on Windows 10 Professional with 16GB of RAM
and an NIVIDA Quadro T1000 GPU was used.

Histology
After HSI was performed on the tissue samples, the
samples were prepared for histological evaluation. For
this purpose, the samples were fixed in formalin, embed-
ded in paraffin, cut in 5 μm steps using a microtome, ap-
plied to slides and stained with haematoxylin and eosin
(H&E). After slide digitization, they were examined with
regard to the tissue composition (i.e. proportion of fat
and musculature in the total tissue sample, as well as
lack of inflammation). Samples containing other tissue
types (e.g. muscle on mucosa specimen), which
accounted for > 5% of the examined preparation surface,
as well as inflammatory modified mucosa samples, were
excluded from the evaluation due to result distortion.
Examples of histological sections are shown in Fig. 3.

Statistics
Raw data sets were saved in Excel® sheets (Microsoft
Corporation, Redmond, USA) and subsequently trans-
ferred into SPSS Statistics® (version 23.0.0.2, MacOS X;

Fig. 1 Sample of striated muscle of spatial and spectral dimension (A), the isolated two-dimensional grayscale image at 650 nm (B), and the
reflectance of a selected region of interest (red dot) from 500 nm to 995 nm (c)
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SPSS Inc., IBM Corporation, Armonk, NY, USA). Data
were expressed as median (MD), mean (M), standard de-
viation (SD±), minimum (min), maximum (max) and
standard error of the mean (SEM). Normal distribution
was checked using non-parametric Kolmogorov-
Smirnov test (KS test) and results were analysed for

statistical significance by the use of analysis of variance
(ANOVA (#)), unpaired non-parametric Mann-Whitney
U tests = ($) and students’ t-test = (*). P-values of ≤0.05
were termed significant. For a proof of principle study
sample size calculation is not practicable, thus this study
is in accordance to other published proof of concept

Fig. 2 Example of a fat tissue sample with a two-dimensional grey scale image at 585 nm and manually placed (coloured circles) regions of
interest (top left), as well as the mean reflectance (coloured lines) as line chart at different wavelengths (top right)

Fig. 3 Histological section of a fat sample from the cheek (A), as well as a muscle sample (B) and a mucosa sample sample (C) from the floor of
the mouth (stratified squamous keratinised epithelium (#), lamina propria (§-light blue), frontal cut of striated muscle fibres (X-light green))
H.E. staining
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works dealing with similar group sizes [30, 31]. Line
charts were used for illustration purposes.

Neural network
The processed training data were split in ratio 85:8:7
(training, validation, test), while training patches used to
fit the networks weights. In addition, validation patches
intended to optimize hyperparameter and test patches
used for evaluation purpose of the fitted model. The data
split procedure was performed considering leave-
patient-out approach. This feed-forward neural network
was trained stepwise in mini-batches of 64 numeric
patches with a patient-ID based stratified cross-
validation paradigm for 4000 epochs using early stop-
ping techniques for plateauing. A uniform adaptive dis-
tribution was used to set initial weights. To improve
generalisation, a dropout rate of 30% was applied after

first and 20% after second and third hidden layer. Each
neuron was activated using rectified linear unit (ReLU).
Training was performed using balanced classes and an
adaptive learning rate for stochastic gradient descent
optimization [32] with momentum of 0.99 and a
smoothing factor equal to 1 × 10− 8. Furthermore, L1 and
L2 regularisation terms of 5 × 10− 3 each for reducing the
cross-entropy loss was set up as shown in Fig. 6. Before
training, hyperparameter such as neural network archi-
tecture, dropout quantity, activation function, learning
rate related parameters, regularization terms and batch
size were adjusted with systematic grid search technique
by taking care of the overfitting gap between training
and validation loss. Every epoch, the validation perform-
ance was evaluated but shuffling was disabled caused by
higher losses. The final softmax-layer predicts inputs
with respect to the highest probability of each class.
Testing is done after training and validation loss con-
verges equally. As plotted in Fig. 6, the model generalises
in a fast manner. The deep neural network performance
was evaluated on the optimal checkpoint applied on fully
independent test data to calculate accuracy (Acc;

Accuracy ¼ TP ðtrue positiveÞþTNðtrue negativeÞ
Total No:of patches ), specificity

(Spec; Specificity ¼ TN
TNþFP ) and sensitivity (Sens;

Sensitivity ¼ TP
TPþFN).

Fig. 4 Normalized spectral signatures that were averaged between all patients / tissue samples that were included in this study

Table 1 Number of tissue samples from 174 patients included
in this study. The total of numeric patches as data source for
deep neural network classification obtained from each sample
class is also given

Class No. of tissue samples (n) Total patches (m)

Fat 97 681

Muscle 101 707

Mucosa 118 826
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Results
Ex-vivo fat, muscle and mucosa - spectral signatures
The spectral signature for each class obtained from the
hyperspectral imaging processing is plotted in Fig. 4.
When comparing fat (group-1) and muscle (group-2),

as well as muscle (group-2) and mucosa (group-3) the
mean reflectance values differed significantly at all wave-
lengths (p < .001). In contrast, the spectral signatures of
fat (group-1) and mucosa (group-3) appeared much
more similar in the graphical overview (Fig. 4), but also
differed significantly at most wavelengths (500 nm to
520 nm, 545 nm to 790 nm, 910 nm to 940 nm and 950
nm to 995 nm (p < .001$*)). Detailed information on
mean values, standard deviations and individual signifi-
cances are available on request.

Neural network
The amount of training data and the distribution among
classes are shown in Table 1. As shown in Fig. 5, a light-
weight architecture was implemented for the studies.

Evaluation
Classification scores were calculated using values re-
ported in Table 2 based on common equations [20].
Interestingly, a comparatively high classification error

between musculature and mucosa was found (error
0.21). Table 3 shows the evaluation results.

Discussion
Although non-invasive examination methods (e.g.
brush biopsy or tissue autofluorescence) have been
developed to monitor oral potentially malignant disor-
ders (OPMD), histopathological examination still rep-
resents the diagnostic gold standard for lesion
monitoring. HSI is a non-invasive, non-contact optical
wide-field modality that holds the potential to sense
tumours in varying depth using visible spectrum (VIS)
and near infrared (NIR) light and therefore to im-
prove OPMD monitoring, early oral cancer diagnosis
and reduce cancer-related mortality and morbidity
[20, 33]. To process the extensive amount of spectra-
spatial data cube information efficiently and automat-
ically, the use of DL methods is suitable. Knowledge
of the spectral characteristics of its main components
(oral mucosa, muscle and fat) is essential for the as-
sessment of complex, pathologically altered oral mu-
cosa. This study presents a method to classify 316
fresh surgical ex-vivo human oral tissue samples’ re-
flectance values into fat, muscle and mucosa, based
on HSI data of a representative number of samples.
This light-weight deep learning (DL) approach
achieved an overall accuracy score over 87% in an or-
dinary and time-saving manner, but with commonly
used optimization techniques. Together with a lot
more patient’s metadata and a hyperspectral database
of many samples from different individuals, the clin-
ical use for non-invasive, automated assessment of
oral mucosal changes would be a conceivable and
tangible approach. Therefore, the data should simul-
taneously serve as a kind of hyperspectral reference li-
brary for future applications such as the in-vivo
examination of chronic inflammatory oral diseases,
the intraoperative assessment of surgical safety mar-
gins or the intraoperative assessment of lymph nodes

Fig. 5 Neural network architecture implemented for medical classification of numeric patches with H2O Flow

Table 2 Confusion Matrix for tissue sample classification using
cross validation approach. Actual classes are reported in rows
and predicted classes in columns. Misclassified patches of
muscle as mucosa show the unresolved deficit of our model so
far

Predicted Class

Actual Class Fat Muscle Mucosa Error

Fat 74 0 8 0.10

Muscle 3 68 15 0.21

Mucosa 1 9 92 0.10

Total 83 79 108
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when deciding to include higher lymph node levels.
Using a light-weight 6-layer deep neural network with
only 10,445 parameters trained about 4000 epochs,
we can distinguish tissue samples in fat, muscle and
oral mucosa with a class accuracy over 80% each.
Though, the presented solution provided fully inde-
pendent test data [20] and this study’s training was
not affected by overfitting, however the optimisation
potential can be increased even further as shown in
Fig. 6. A limitation of this approach is the high-
dimensional feature space with about 100 (500 to
1000 nm) wavelengths. Further experiments with sig-
nificantly reduced number of features based on fea-
ture selection and dimensionality reduction processes
present a more complex problem the research group
is currently working on. By gaining more sample data,
the generalisation potential of the deep learning ap-
proach and the numerical discrepancy between sensi-
tivity and specificity regarding muscle and mucosa as
shown in Table 3 could improve. However, the false-
positive classification of muscle and mucosa in the
test data set (error 0.21) compared to fat versus

muscle or mucosa (error 0.10) proved to be relatively
high (Table 2). One explanation for this would be the
anatomically determined increased contamination of
the mucosal tissue with musculature, which was
mainly found in the area of the cheeks and soft palate
mucosa.
Preliminary results of this proof of concept study dem-

onstrate the ability of deep learning methodology for
discriminating between hyperspectral tissue samples. Fu-
ture studies are going to deal with classification between
healthy, dysplastic and cancerous tissue samples based
on Convolutional Neural Network (CNN) approaches
with non-pre-processed hyperspectral cube data.

Conclusions
The processing of hyperspectral tissue data by a
neural network allows the automated classification of
tissue samples with increasing model accuracies. Our
research deals with the classification of healthy oral
fat, muscle and mucosa by using of HS-reflectance
values and thus differs to alternative approaches build
upon HS-images and CNNs. With an accuracy of >
80% our model in comparison to Halicek et al. [18]
lacks accuracy but relies on numeric patches charac-
terises fast training and feed-forward phase. In order
to eliminate the accuracy gap, future studies will
emphasize convolutional building blocks and image
data. Provided that sufficient hyperspectral training
data of dys- and anaplastic mucosa samples are avail-
able, the combination of hyperspectral imaging and
deep learning can thus represent a promising method
for a real time non-invasive assessment of oral muco-
sal changes.

Table 3 Results of evaluation using independent test data with
a size of 21 tissue samples patches equally distributed at the
checkpoint after 254 epochs with lowest loss of 0.1321 as
shown in Fig. 6. Values are reported as class-dependent
classification scores (Acc = accuracy, Spec = specificity, Sens =
sensitivity)

Class Samples Acc Spec Sens

Fat 7 0.95 1.00 0.86

Muscle 7 0.86 0.79 1.00

Mucosa 7 0.81 0.93 0.57

Fig. 6 Training and validation losses for 4000 epochs. Validation losses are reported as average across every 5 folds
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