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Abstract
Background  Facial aesthetics is one of major motivations for seeking orthodontic treatment. However, even for 
experienced professionals, the impact and extent of incisor and soft tissue changes remain largely empirical. With 
the application of interdisciplinary approach, we aim to predict the changes of incisor and profile, while identifying 
significant predictors.

Methods  A three-layer back-propagation artificial neural network model (BP-ANN) was constructed to predict incisor 
and profile changes of 346 patients, they were randomly divided into training, validation and testing cohort in the 
ratio of 7:1.5:1.5. The input data comprised of 28 predictors (model measurements, cephalometric analysis and other 
relevant information). Changes of U1-SN, LI-MP, Z angle and facial convex angle were set as continuous outcomes, 
mean square error (MSE), mean absolute error (MAE) and coefficient of determination (R²) were used as evaluation 
index. Change trends of Z angle and facial convex angle were set as categorical outcomes, accuracy, precision, recall, 
and F1 score were used as evaluation index. Furthermore, we utilized SHapley Additive exPlanations (SHAP) method 
to identify significant predictors in each model.

Results  MSE/MAE/R2 values for U1-SN were 0.0042/0.055/0.84, U1-SN, MP-SN and ANB were identified as the top 
three influential predictors. MSE/MAE/R2 values for L1-MP were 0.0062/0.063/0.84, L1-MP, ANB and extraction pattern 
were identified as the top three influential predictors. MSE/MAE/R2 values for Z angle were 0.0027/0.043/0.80, Z angle, 
MP-SN and LL to E-plane were considered as the top three influential indicators. MSE/MAE/R2 values for facial convex 
angle were 0.0042/0.050/0.73, LL to E-plane, UL to E-plane and Z angle were considered as the top three influential 
indicators. Accuracy/precision/recall/F1 Score of the change trend of Z angle were 0.89/1.0/0.80/0.89, Z angle, Lip 
incompetence and LL to E-plane made the largest contributions. Accuracy/precision/recall/F1 Score of the change 
trend of facial convex angel were 0.93/0.87/0.93/0.86, key contributors were LL to E-plane, UL to E-plane and Z angle.
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Background
Orthodontics is a discipline dedicated to achieve high 
standards of occlusion, aesthetics, and long-term stabil-
ity. Nonetheless, with social development and the explo-
sion of information, more patients seek orthodontic 
treatment primarily to improve their appearance, and the 
degree of attractiveness has been found to be somewhat 
related to personality, social interaction and life qualities 
[1, 2]. Although individuals’ perceptions of beauty vary, 
the standard esthetic concern addressed by orthodontic 
therapy focuses on correcting sagittal skeletal discrep-
ancies. In other words, the common goal when treat-
ing Class II or III patients is to minimize their deviation 
from Class I or attenuate the abnormal maxillomandibu-
lar relationship, thereby reducing facial disharmony [3]. 
Commonly, when explaining the customized treatment 
plan to patients, they often propose: “What changes will 
happen to my teeth and profile?” [4, 5] Since orthodontic 
therapy primarily focus on hard tissue, even for experi-
enced professionals, the impact and the extent of teeth 
and soft tissue change remain largely empirical.

Given the close attachment and proximity of teeth, 
bone and muscle, the appearance of soft tissue is undeni-
ably influenced by the underlying hard tissue structure. 
In the past, the change of facial profile was believed to 
adapt to the underlying dentoalveolar structures at an 
empirical ratio, which gave rise to the widespread use of 
Visual Treatment Objective (VTO) software [6]. None-
theless, the emergence of clinical errors exceeding 2 mm 
has raised skepticism regarding the reliability and valid-
ity, as well as the robustness of multiple regression analy-
sis [7]. Recent studies have shown that the least accurate 
predictions of this method tend to occur in the soft tissue 
regions, particularly in the chin and lower lip. This may 
be explained by the fact that it only integrates imaging 
data without considering the individual’s overall infor-
mation [8, 9]. With the booming progression of artificial 
intelligence (AI), its applications in the field of orthodon-
tics have become increasingly widespread. From expert 
system-based automated cephalometric landmark detec-
tion and measurements to two-dimensional image clas-
sification, and further to the integration of complex data 
and architectures for generating comprehensive predic-
tions, including factors such as gender, treatment dura-
tion, and growth and development [10–12]. Regrettably, 
few studies have employed such methodologies in fore-
casting the change of profile [13–15]. Due to the limited 

number of samples and predictors in previous research, 
along with the absence of ranking the predictors by their 
impact, the applicability of these models is constrained. 
Therefore, we collected as much information as possible 
including model measurements, cephalometric analysis 
and other relevant information to serve as predictors. The 
back-propagation artificial neural network (BP-ANN) 
model was selected due to its outstanding performance 
in handling issues of uncertainty, nonlinearity, lack of 
configuration and multiple-factor interactions [16].

With the application of interdisciplinary approach, we 
aim to propose a new holistic method to predict changes 
in incisor and profile for orthodontic patients prior to 
treatment, while identifying clinically significant influ-
encing factors.

Methods
Study population
The study included 346 patients (adults and adolescents 
after pubertal growth peak) who sought fixed orth-
odontic consultation at the Affiliated Stomatology Hos-
pital of Guangzhou Medical University in Guangzhou, 
China. Prior to orthodontic treatment, all participants 
received comprehensive information about the study and 
signed written informed consent. The study protocol was 
approved by the Ethical Committee (20240809171826). 
Extraction patterns included in the study were limited to 
no extraction, extraction of two premolars, and extrac-
tion of four premolars to minimize the heterogeneity of 
the study. Patients were excluded based on the following 
criteria: (1) under 14 years of age, (2) presence of miss-
ing teeth (excluding third molars) or malformed teeth, 
(3) history of previous orthodontic treatment or cleft lip 
and palate, (4) treatment options involving expanders, 
functional therapy, invisible therapy and orthognathic 
surgery.

Data collection
Pre-treatment data were collected as predictors, includ-
ing model measurements (the crowding of upper and 
lower arches, molar relationship, anterior overbite, ante-
rior overjet and curve of Spee), cephalometric analysis 
(analysis of bone, dental and soft tissue), and other rel-
evant information (age, sex, lip incompetence, extrac-
tion pattern and anchorage mode), resulting in a total 
of 28 predictors. Only four specific measurements from 
post-treatment data (U1-SN, L1-MP, Z angle, and facial 

Conclusion  BP-ANN could be a promising method for objectively predicting incisor and profile changes prior to 
orthodontic treatment. Such model combined with key influential predictors could provide valuable reference for 
decision-making process and personalized aesthetic predictions.
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convex angle) were gathered, and changes in these mea-
surements were calculated as outcomes, by subtracting 
the pre-treatment values from the post-treatment val-
ues. We set 4 continuous variables and 2 categorical vari-
ables as outcomes, specifically Y1: the change of U1-SN, 
Y2: the change of L1-MP, Y3: the change of Z angle, Y4: 
the change of facial convex angle, Y5: the change trend 
of Y3 (using − 0.5 and 0.5 as the cut-off points, results 
were divided into three categories: 0 for unchanged, 1 for 
decreased and 2 for increased) and Y6: the change trend 
of Y4 (classification criteria consistent with Y5).

Since there is no uniform formula for the sample size 
calculation of ANN model, our analysis followed the most 
recent suggestions [17, 18]: a minimum of 50 samples are 
required to start any meaningful machine learning based 
data analysis, and at least 10 samples per degree of free-
dom (predictor) is reasonable [19], which would require 
a total of 280 samples in the research. Accordingly, our 

sample size was 346, which met the minimum require-
ment and was theoretically feasible.

Among these, model measurements were collected 
from examination records, while other relevant informa-
tion were gathered from both examination records and 
medical record system by YZ and YW. To ensure accu-
racy, the model measurements were re-examined by GD 
using intraoral scan data. Cephalograms tracings were 
made by 1 investigator (MZ) and repeated twice at inter-
vals of 2 weeks to minimize measurement errors. Before 
data analysis, JP reviewed the tracings, and any disagree-
ment would be discussed with JC to reach a consensus. 
The reference points were digitized with the Dolphin 
Imaging (v11.95, Dolphin Imaging and Management 
Solutions Inc., Chatsworth, CA, USA), twenty-six land-
marks and 17 measurements were chosen (Fig. 1).

Fig. 1  Index of cephalometric measurements. 1 SNA (°), 2 SNB (°), 3 ANB (°), 4 SNP (°), 5 MP-SN (°), 6 Y-axis (°), 7 U1-SN (°), 8 L1-MP (°), 9 U6-PP (mm), 10 
L6-MP (mm), 11 UL-E plane (mm), 12 LL-E plane (mm), 13 SN-Sn (°), 14 UL height (mm), 15 LL height (mm), 16 Z angle (°), 17 facial convex angle (°). Purple 
and orange lines indicate shifted lines
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Network construction
We utilized the Python programming language to con-
struct, train, and test the BP-ANN model, with the pro-
cess documented in open-access Jupyter Notebooks (​h​t​t​
p​s​:​​​/​​/​c​i​m​c​​​b​.​g​​i​t​h​u​​​b​.​​​i​o​​/​M​e​t​a​b​P​r​o​j​e​c​t​i​o​n​V​i​z​/). A 3-layer ​n​e​u​
r​a​l network, consisting of 28 input neurons in the input 
layer and 7 neurons in the hidden layer, was employed 
for the machine learning task. The hidden neurons 
functioned as interneurons, learning by adjusting their 
weighted values, and the number of these neurons was 
determined through a trial-and-error approach [20].

Continuous input data were normalized to the range 
[-1, 1] using maximum-minimum normalization before 
being processed by the neural network. The dataset was 
randomly divided into three cohorts: 70% for training, 
15% for validation and 15% for testing [21]. This BP-ANN 
model employed the error backward propagation learn-
ing algorithm, each layer ‘‘shared’’ the error with its neu-
rons, allowing the reference errors for each layer to be 
obtained. These reference errors were then used to adjust 
the connection weights, aiming to minimize the error as 
much as possible [16]. Iterative learning was halted at the 
minimum error point of the validation set, specifically at 
0.01, and training was preemptively terminated when the 
mean square error (MSE) of the validation set reached 
its minimum [22]. Moreover, the momentum param-
eter of 0.9 was employed to smooth the optimization 
path in parameter space, mitigating common issues like 
oscillations and local minima entrapment. The sigmoid 
function was selected as the activation function for the 
hidden layers, while linear activation was employed for 
regression tasks and softmax activation for classification 
tasks [23].

After selecting the best-fit model, the performance was 
evaluated on the testing set using appropriate evaluation 
metrics. For continuous variables (Y1-Y4), the metrics 
included MSE, mean absolute error (MAE) and the coef-
ficient of determination (R²). For categorical variables 
(Y5 and Y6), accuracy, precision, recall, and F1 Score 
were used to verify the model’s accuracy and precision.

Statistical analysis
R-software (version 4.4.0, www.r-project.org) was used 
to perform the baseline characteristics analyses. The 
Chi-square test was applied for categorical variables, the 
student’s t-test for continuous variables with a normal 
distribution, and the Wilcoxon rank-sum test for contin-
uous variables without a normal distribution. Continuous 
variables were reported as the mean with standard devia-
tion or the median with interquartile range.

We employed the SHapley Additive exPlanations 
(SHAP) method to interpret the outputs of our machine 
learning models. This approach could quantify and rank 
the contribution of each factor to individual predictions, 

facilitating a comprehensive understanding of model 
behavior. For further analysis, we identified and focused 
on the top three indicators that contributed most signifi-
cantly to each model [24].

Results
Patient characteristics
The population characteristics are shown in Table  1. A 
total of 346 eligible patients were randomly divided into 
training cohort (n = 242), validation cohort (n = 52), and 
testing cohort (n = 52) in the ratio of 7:1.5:1.5.

The median age of patients at diagnosis was 23.5 (21, 
26) years, with the majority being female (86.1%). Most 
had incompetent lips (61.0%) and underwent the extrac-
tion model involving removal of four premolars (84.4%). 
Additionally, most patients presented with mild crowd-
ing (68.2% for upper arch and 57.8% for lower arch) and 
class I molar relationship (56.6%). Among the features 
associated with cephalometric analysis, the median ANB 
was 3.75 (2.3, 5.4), the average MP-SN was 34.7 ± 6.9, 
the median of U1-SN was 107.1 (101.3, 112.1), the aver-
age L1-MP was 97.3 ± 9.4, the median of Z angle was 
69.1 (64.0, 73.1) and facial convex angle was 164.3 (160.1, 
167.9). Regarding anchorage mode, 46.2% of patients 
received mild or moderate anchorage, while 53.8% 
received maximum anchorage using implants. How-
ever, there was no significant difference among different 
groups (P > 0.05).

Network establishment and evaluation
Figures  2, 3, 4 and 5 illustrate the neural network pre-
dictions for the changes in Y1 to Y4. Several indicators 
were conducted to evaluate the performance of each 
prediction. Specifically, The MSE for the training/vali-
dation/testing cohort of Y1 were 0.0036/0.0050/0.0042, 
the MAE were 0.048/0.054/0.055, and the R2 were 
0.85/0.82/0.84. For Y2, the MSE for the training/valida-
tion/testing cohort were 0.0059/0.0075/0.0062, the MAE 
were 0.060/0.070/0.063 and the R2 were 0.83/0.80/0.84. 
As for Y3, the MSE for the training/validation/test-
ing cohort were 0.0033/0.0039/0.0027, the MAE were 
0.046/0.049/0.043 and the R2 were 0.77/0.75/0.80. 
Lastly, for Y4, the MSE for the training/validation/test-
ing cohort were 0.0024/0.0039/0.0042, the MAE were 
0.040/0.050/0.050 and the R2 were 0.72/0.71/0.73.

We also verified the performance of the classification 
outcomes. For Y5, the accuracy for the training/valida-
tion/testing cohorts were 0.80/0.81/0.89. The precision 
for the validation/testing cohorts were 1.0/1.0, the recall 
were 0.75/0.80, and the F1 score were 0.86/0.89. For Y6, 
the accuracy for the training/validation/testing cohorts 
were 0.88/0.92/0.93. The precision for the validation/test-
ing cohorts were 0.93/0.87, the recall were 0.78/0.93, and 
the F1 score were 0.85/0.86.

https://cimcb.github.io/MetabProjectionViz/
https://cimcb.github.io/MetabProjectionViz/
http://www.r-project.org
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Predictors Overall
(346 patients)

Training cohort (242 patients) Validation cohort
(52 patients)

Testing cohort
(52 patients)

P value

Sex 0.66
  male 48(13.9) 31(12.8) 9(17.3) 8(15.4)
  female 298(86.1) 211(87.2) 43(82.7) 44(84.6)
Extraction pattern 0.77
  no extraction 32(9.2) 24(9.9) 4(7.7) 4(7.7)
  two premolars 22(6.4) 13(5.4) 4(7.7) 5(9.6)
  four premolars 292(84.4) 205(84.7) 44(84.6) 43(82.7)
Lip incompetence 0.97
  no 135(39.0) 94(38.8) 21(40.4) 20(38.5)
  yes 211(61.0) 148(61.2) 31(59.6) 32(61.5)
Upper crowding 0.13
  mild 236(68.2) 164(67.8) 32(61.6) 40(76.9)
  moderate 70(20.2) 54(22.3) 9(17.3) 7(13.5)
  severe 21(6.1) 14(5.8) 6(11.5) 1(1.9)
  space 19(5.5) 10(4.1) 5(9.6) 4(7.7)
Lower crowding 0.14
  mild 200(57.8) 132(54.6) 28(53.9) 30(57.7)
  moderate 118(34.1) 88(36.3) 20(38.4) 19(36.5)
  severe 19(5.5) 15(6.2) 3(5.8) 2(3.8)
  space 9(2.6) 7(2.9) 1(1.9) 1(1.9)
Molar relationship 0.41
  I 196(56.6) 141(58.3) 30(57.7) 25(48.1)
  II 93(26.9) 65(26.9) 15(28.8) 13(25.0)
  III 54(15.6) 33(13.6) 7(13.5) 14(26.9)
  other 3(0.9) 3(1.2) 0 0
Overbite 0.85
  normal 210(60.7) 150(62.0) 32(61.4) 28(53.9)
  deep I 59(17.0) 40(16.5) 9(17.3) 10(19.2)
  deep II 20(5.8) 13(5.4) 3(5.8) 4(7.7)
  deep III 22(6.4) 17(7.0) 2(3.9) 3(5.8)
  reverse I 23(6.6) 13(5.4) 4(7.7) 6(11.5)
  reverse II 4(1.2) 2(0.8) 2(3.9) 1(1.9)
  open I 6(1.7) 5(2.1) 0 0
  open II 1(0.3) 1(0.4) 0 0
  open III 1(0.3) 1(0.4) 0 0
Overjet 0.96
  normal 130(37.6) 89(36.8) 19(36.5) 22(42.3)
  deep I 125(36.1) 90(37.2) 20(38.5) 15(28.8)
  deep II 70(20.2) 48(19.8) 11(21.2) 11(21.2)
  deep III 13(3.8) 8(3.3) 2(3.8) 3(5.8)
  reverse I 7(2.0) 6(2.5) 0 1(1.9)
  reverse II 1(0.3) 1(0.4) 0 0
Anchorage mode 0.54
  mild 135(39.0) 95(39.3) 21(40.4) 19(36.6)
  moderate 25(7.2) 22(9.1) 2(3.8) 1(1.9)
  maximum 186(53.8) 125(51.6) 29(55.8) 32(61.5)
Age 23.5(21, 26) 23(20.3, 25) 24(19.8, 26) 24(22, 25.3) 0.64
Spee curve 2.5(2, 3.5) 2.5(2, 3.5) 3(2, 3.5) 2.8(2, 3.6) 0.84
ANB 3.75(2.3, 5.4) 3.8(2.0, 5.4) 3.6(2.5, 5.3) 4.2(2.9, 5.6) 0.28
SNA 82.7 ± 3.6 82.6 ± 3.6 83.2 ± 3.5 82.6 ± 3.7 0.52
SNB 79.0 ± 3.6 79.0 ± 3.7 79.8 ± 3.4 78.4 ± 3.4 0.13
SNP 80.2 ± 3.4 80.2 ± 3.5 80.3 ± 3.6 80.2 ± 3.1 0.95

Table 1  Baseline clinical and imaging characteristics of 346 eligible patients
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SHAP analysis
SHAP summary plot provides a visual representation of 
the impact of various predictors on the outcome. As for 
Y1, larger values of U1-SN, MP-SN and ANB were more 
likely to negatively affect Y1, which corresponded with 
more retraction of upper incisors. Regarding Y2, larger 
L1-MP values, smaller ANB angles and closer proxim-
ity to Class III malocclusion were more likely to nega-
tively affect Y2, which related to more retraction of lower 
incisors. For Y3, larger values of Z angle and MP-SN, 
combined with smaller values of LL to E-plane, were 
more likely to negatively affect Y3, which indicated the 
decrease of Z angle. Similarly, for Y4, smaller values of 
LL to E-plane, larger values of UL to E-plane and Z angle 
were more likely to negatively affect Y4, which implied 
the decrease of facial convex angle. (Figures 6, 7, 8 and 9)

The SHAP bar plot visually displays the mean absolute 
SHAP values for various features on the categorical out-
comes. For Y5, soft tissue Z angle, Lip incompetence and 
LL to E-plane made the largest contributions. In the case 
of Y6, the key contributors were LL to E-plane, UL to 
E-plane and Z angle. (Figures 10 and 11)

Discussions
Since its inception in the 1950s, AI has advanced rapidly 
and is now widely used in orthodontics [10, 25]. For intri-
cate clinical questions, it not only enhances efficiency 
and productivity, but also assists researchers in identi-
fying key points that may have been overlooked in large 
datasets, thereby reducing the subjective bias commonly 
found in clinical practice [3, 26, 27].

Our results revealed that constructed BP-ANN mod-
els demonstrated strong capability in analyzing patients’ 
comprehensive information and forecasting changes of 
incisor and profile before orthodontic treatment. To be 
specific, the fitting degree for incisors were better than 
that for soft tissue. This may due to teeth are generally 

designed to achieve or approach the standard value. As 
for borderline cases with severe skeletal deformities, 
teeth would retain compensatory labial or lingual incli-
nation to improve the profile without requiring orthog-
nathic surgery [28, 29]. However, factors such as the 
available alveolar space, the design and control of anchor-
age, the length of the teeth roots, the aesthetic standards 
and oral hygiene conditions may contribute to the devia-
tion of results [30, 31].

We further found that compared with the quantitative 
prediction of profile change, the qualitative prediction 
was more accurate. The reason may be that qualitative 
prediction relies more on guidelines and observation, 
whereas the actual clinical process involves a variety of 
uncertain and dynamic factors that could complicate the 
precision of quantitative predictions. For instance, when 
a patient presents with small Z Angle and convex profile, 
orthodontists often try to retract incisors and rotate the 
mandibular counterclockwise to increase the Z Angle 
while reduce facial convexity [32]. Conversely, if a patient 
has large Z Angle and concave profile, the focus shifts to 
increase incisor inclination with careful consideration of 
tooth extraction, to decrease the Z Angle while improve 
facial convexity [33]. Moreover, the deviation in quanti-
tative prediction may result from complex biomechani-
cal responses and multiple interactions among bone, 
teeth and soft tissue during orthodontic tooth move-
ment. For example, implants designed to achieve maxi-
mum anchorage in the sagittal direction may inevitably 
impact the vertical control, potentially leading to change 
of occlusal plane and three-dimensional soft tissue [34]. 
Even in orthodontic-orthognathic surgical treatment, 
which aims to remove dental compensations and correct 
overall skeletal discrepancies, the success rate of achiev-
ing the predicted facial morphology within a 1 mm error 
margin was only 54%, due to the complex and nonlinear 
response of soft tissues to underlying hard-tissue changes 

Predictors Overall
(346 patients)

Training cohort (242 patients) Validation cohort
(52 patients)

Testing cohort
(52 patients)

P value

MP-SN 34.7 ± 6.9 34.8 ± 6.9 35.1 ± 6.7 33.8 ± 7.5 0.58
Y Axis 64.4 ± 3.6 64.3 ± 3.7 64.5 ± 3.4 64.2 ± 3.5 0.91
L1-MP 97.3 ± 9.4 97.3 ± 9.2 95.4 ± 9.4 98.8 ± 10.3 0.17
U1-SN 107.1(101.3, 112.1) 107.1(101.3, 111.7) 107.3(102.4, 112.1) 107.1(101.0, 112.6) 0.97
U6-PP 20.5 ± 2.3 20.6 ± 2.2 20.2 ± 2.3 20.4 ± 2.3 0.44
L6-MP 30.3(28.6, 32.1) 30.1(28.6, 31.9) 30.4(28.3, 32.0) 30.7(28.6, 32.2) 0.56
Ul height 10.3(9.4, 11.3) 10.4(9.5, 11.4) 10.1(9.2, 11.0) 10.6(9.4, 11.5) 0.32
Ll height 9.0(7.6, 10.2) 9.1(7.7, 10.2) 8.8(7.6, 10.3) 8.9(7.5, 10.2) 0.68
Ll to E-plane 3.0 ± 3.1 2.9 ± 3.0 2.6 ± 3.4 3.4 ± 3.4 0.25
Ul to E-plane 1.4(0.5 ± 3.2) 1.3(-0.7,3.2) 1.9(0, 3.6) 1.65(0.15, 3.15) 0.35
SN-Sn 74.3 ± 4.9 74.1 ± 4.7 74.8 ± 5.2 74.6 ± 5.3 0.54
Z angle 69.1(64.0, 73.1) 69.5(64.4, 73.2) 69.6(65.0, 73) 66(63.1, 71.5) 0.07
facial convex angle 164.3(160.1, 167.9) 164.1(160.2, 167.9) 165.5(160.3, 168.1) 165.8(159.9, 167.8) 0.77

Table 1  (continued) 
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[14]. Additionally, patient-specific factors such as age, 
skeletal type, lip thickness, and habits like lip biting and 
mouth breathing can affect muscle function and the 
repositioning of soft tissue, further complicating accurate 
predictions [35–38].

Since our model can meticulously capture the subtle 
correlation between soft tissue and orthodontic tooth 
movement, and optimizing soft tissue camouflage is a 
common goal for both orthodontists and patients, we 
further analyzed and ranked the factors using SHAP 

analysis. Interestingly, we found that patients with high 
angle (MP-SN) positively impacts the retraction of upper 
incisors, as well as has a negative effect on the change in 
Z Angle, which presents a contradiction for patients with 
convex profile. Generally, high angle cases have always 
been a challenge for orthodontists due to issues like ante-
rior alveolar hypoplasia, lip incompetence, molar extru-
sion, and clockwise rotation of the mandible, which may 
lead to downward and posterior rotation of the chin and 
compromising facial esthetics [39]. Research has found 

Fig. 3  The neural network predictions for the changes in Y2, (a) training 
cohort, (b) validation cohort, (c) testing cohort

 

Fig. 2  The neural network predictions for the changes in Y1, (a) training 
cohort, (b) validation cohort, (c) testing cohort
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that effective incisor retraction and good vertical con-
trol are beneficial for such patients [34]. Nevertheless, 
comparative analysis revealed that in patients with high-
angle growth pattern, the maxillary palatal alveolar bone 
was significantly thinner, and the distance between inci-
sor root and incisive canal was relatively small, which 
restricted incisor retraction [40]. These evidences high-
light the unique characteristics of high angle patients in 
prediction models and emphasize the need for careful 
risk management when planning incisor retraction.

Another point worth noting is that LL to E-plane has 
the most significant effect in prediction of soft tissue 
profile, which ranked in top three in either qualitative 
or quantitative model. Specifically, patients with convex 
lower lip are likely to have a positive effect on the Z angle 
and facial convex angle. Conversely, reduced Z angle and 
face convex angle are preferable for patients with concave 
lower lip. This could be attributed to its privileged loca-
tion as the adjacent esthetic subunit to the chin, which 
exhibits greater adjustment from tooth relocation [41]. 

Fig. 5  The neural network predictions for the changes in Y4, (a) training 
cohort, (b) validation cohort, (c) testing cohort

 

Fig. 4  The neural network predictions for the changes in Y3, (a) training 
cohort, (b) validation cohort, (c) testing cohort
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In addition to orthodontic tooth movement, factors such 
as initial incisor inclination, lip tension, thickness and 
height could also count for the difference [42, 43]. Inter-
estingly, our findings revealed that the effect of UL to 
E-plane on soft tissue is opposite to that of LL to E-plane. 
This contradicts the common understanding that upper 
incisor retraction can alleviate upper lip protrusion, 
accompanied by the backward movement of the Subna-
sale (Sn) point and improvement of profile. Nonetheless, 
remarkable upper lip protrusion is often associated with 
severe protrusion of the upper incisors and alveolar bone, 

simply retracting the incisor may not achieve optimal 
results and may require more complex anchorage, along 
with higher risk of relapse [44]. Additionally, soft tissues 
may not fully adapt to the new support structure trig-
gered by tooth relocation, resulting in discrepancies in lip 
shape and facial contour [45].

Except for the top three influential predictors, other 
model measurements such as lower arch crowding, the 
curve of Spee and molar relationships also had important 
impact on the outcome and ranked top five. It is consis-
tent with previous research [46, 47]. Severe crowding and 

Fig. 9  SHAP summary plot of Y4

 

Fig. 8  SHAP summary plot of Y3

 

Fig. 7  SHAP summary plot of Y2

 

Fig. 6  SHAP summary plot of Y1
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deep curve of Spee usually indicate extra need of space, 
which may interfere with the adjustment of incisor incli-
nation [47]. Also, pre-treatment molar relationship often 
implies irregular intermaxillary relationship. To achieve 
the Class I molar relationship may require some compro-
mise in the adjustment of incisor inclination [48]. These 
findings highlight the importance of gathering compre-
hensive information and conducting integrated patient 
evaluation.

Our study underscores the importance of personal-
ized prediction before orthodontic treatment for patients 
with varying characteristics and highlights the most sig-
nificant factors. Given the acceptable accuracy of our 
research results, another clinical utility of the system 
lies in serving valuable reference for patients and young 
physicians who are uncertain about extraction strategies, 
since such decision is a common and important aspect 
in clinical practice. Orthodontists can assist patients in 
selecting the extraction pattern that best aligns with their 
chief complaint and expectation by comparing the pre-
dictions of different modes.

Limitation

1)	 Though cephalometric analysis has long been 
considered as the key method for profile evaluation 
and is easily obtained, three-dimensional 
measurements could provide more comprehensive 
information, and we are already working on it.

2)	 Types of extraction were restricted to three modes to 
reflect the clinical characteristics of the orthodontic 
patients as much as possible while minimize the 
heterogeneity of the study. However, it inevitably 
leads to some loss of patient information and 
reduction in sample size.

3)	 A larger sample size, more detailed variables and 
external testing cohort are expected to validate the 
practicality of the model.

4)	 Transversal issues are an important aspect of 
orthodontics and may be associated with sagittal 
issues. Although we have excluded cases with 
expanders, functional and invisible therapy, future 
studies are expected to explore the effects of 
transversal issues in greater detail.

Conclusion
Based on the theoretical and clinical significance, we 
constructed the BP-ANN model to anticipate changes of 
incisor and profile under comprehensive parameters, as 
well as identify potential significant factors prior to treat-
ment. This approach will serve as a valuable reference for 
personalized aesthetic predictions, particularly in cases 
where exists uncertainty about the necessity of extrac-
tion or which kind of patient may benefit from profile 

Fig. 11  SHAP bar plot of Y6

 

Fig. 10  SHAP bar plot of Y5
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changes. Furthermore, it could offer theoretical support 
for in-depth exploration of the potential correlations 
among the structures of craniofacial bones, teeth, and 
soft tissue.
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