
R E S E A R C H Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit  h t t p  : / /  c r e a  t i  v e c  o m m  o n s .  o r  g / l i c e n s e s / b y / 4 . 0 /.

Jindanil et al. Head & Face Medicine           (2025) 21:21 
https://doi.org/10.1186/s13005-025-00500-1

Head & Face Medicine

†Thanatchaporn Jindanil and Oana-Elena Burlacu-Vatamanu shared 
first co-authorship.

*Correspondence:
Thanatchaporn Jindanil
Thanatchaporn.jindanil@kuleuven.be
Reinhilde Jacobs
Reinhilde.jacobs@ki.se

Full list of author information is available at the end of the article

Abstract
Background Virtual simulation has advanced in dental healthcare, but the impact of different tomographic 
techniques on virtual patient (VP) creation remains unclear. This study primarily aimed to automatically create VP from 
facial scans (FS), intraoral scans (IOS), multislice (MSCT), and cone beam computed tomography (CBCT); Secondarily, 
to quantitatively compare artificial intelligence (AI)-driven, AI-refined and semi automatically registered (SAR) VP 
creation from MSCT and CBCT and to compare the effect of soft tissue on the registration with MSCT and CBCT.

Methods A dataset of 20 FS, IOS, and (MS/CB)CT scans was imported into the Virtual Patient Creator platform to 
generate automated VPs. The accuracy (percentage of corrections required), consistency, and time efficiency of the 
AI-driven VP registration were then compared to those of the AI-refined and SAR (clinical reference) using Mimics 
software. The surface distance between the registered FS and the (MS/CB)CT surface rendering using SAR and 
AI-driven methods was measured to assess the effect of soft tissue on registration.

Results All three registration methods achieved 100% accuracy for VP creation with both MSCT and CBCT (p > 0.999), 
with no significant differences between tomographic techniques either (p > 0.999). Perfect consistency (1.00) was 
obtained with AI-driven and AI-refined methods, and slightly lower for SAR (0.977 for MSCT and 0.895 for CBCT). 
Average registration times were 24.9 and 28.5 s for AI-driven and AI-refined, and 242.3 and 275.7 s for SAR with 
MSCT and CBCT respectively. The total time was significantly shorter for MSCT (313.7 s) compared to CBCT (850.3 s) 
(p < 0.001). While the average surface distance between MSCT- and CBCT-based VP showed no significant difference 
(p > 0.05), AI-driven resulted in a smaller surface distance than SAR (p < 0.05).

Conclusions AI enables fast, accurate, and consistent VP creation using FS, IOS, and (MS/CB)CT data. AI-driven, 
AI-refined, and semi-automated methods all achieve good accuracy. Additionally, soft tissue registration shows no 
significant difference between MSCT and CBCT.
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Background
Virtual simulation has significantly advanced in dental 
healthcare. Over a decade has passed since Joda and Gal-
lucci introduced the concept of the three-dimensional 
(3D) virtual patient (VP), the 3D model superimposed on 
the intraoral scan (IOS), extraoral scan or facial scan (FS), 
and cone beam computed tomography (CBCT) [1]. Each 
of these imaging devices is optimized to capture a dif-
ferent tissue type but currently no single imaging device 
can accurately capture them all, which is why the fusion 
of the imaging modalities is proposed as a tool for visu-
alization and downstream function and analysis [2]. The 
model can be used to visualize and plan treatment strat-
egies with remarkable precision and efficiency, for com-
plex procedures such as dental restorations, orthodontic 
treatment, implant placement or maxillofacial surgery, 
while also improving communication with the patients 
and other healthcare professionals [3].

3D skeletal images can be obtained not only from 
CBCT but also from multislice computed tomography 
(MSCT) [4]. MSCT data acquisition uses a translate-and-
rotate fan beam with a direct circular detector array to 
measure photon density with the patient in the supine 
position. The individual slices are then digitally post-pro-
cessed and stacked together to create the 3D images [5, 
6]. CBCT, which is more commonly used in dental and 
maxillofacial imaging, acquires volumetric data by simul-
taneously rotating a cone beam along with a two-dimen-
sional (2D) detector array, typically with the patient in 
an upright position [6, 7]. MSCT is recognized for its 
superior image quality, particularly in terms of contrast 
resolution and noise level. However, CBCT can provide 
high-quality 3D images with lower radiation exposure 
and cost compared to MSCT [7–9]. The key distinction 
is that MSCT generates Hounsfield units, while CBCT 
produces quantitative gray values, which are not directly 
comparable and are primarily used in image process-
ing for subsequent applications [10]. Artificial intelli-
gence (AI) has demonstrated its potential to effectively 
overcome segmentation challenges for both MSCT and 
CBCT [11–16], being able to perform multimodal image 
registration with time efficiency, accuracy, and strong 
consistency [17, 18].

As all of the aforementioned processes are essential for 
VP, and despite the integration of dynamic occlusion and 
clinical space-time information to create four-dimen-
sional models, the creation of VP still relies primarily on 
manual or semi-automated segmentation and registra-
tion techniques [19–21]. The integration of AI into this 
process could significantly enhance its development and 
provide an opportunity to finally incorporate the VP into 
daily practice, but there is a gap in understanding the 
possible impact of different tomographic techniques on 
VP creation. Thus, the primary objective of this study was 

to automatically create the VP from FS, IOS, and (MS/
CB)CT. The secondary objectives were to quantitatively 
compare AI-driven, AI-refined, and semi-automatically 
registered VP from MSCT and CBCT and to compare 
the effect of soft tissue on MSCT and CBCT registration.

Methods
Aim
This study aimed to automate the creation of the VP 
using FS, IOS, and (MS/CB)CT data. Secondary objec-
tives included comparing AI-driven, AI-refined, and 
semi-automatic VP registration methods for MSCT and 
CBCT, as well as assessing the impact of soft tissue on 
registration accuracy.

Sample
The image dataset used in this study to create the 
VP belonged to 20 adolescents, 11 males (mean age 
15.09 ± 2.07, range 12–20 years-old) and 9 females (mean 
age 14.78 ± 1.92, range 11–17 years-old), who were 
undergoing interceptive orthopedic orthodontic treat-
ment with appliances for skeletal class II or III malocclu-
sion in mixed dentition, both groups used a hybrid hyrax 
device in the upper jaw combined with either a remov-
able facemask or a titanium mentoplate bone anchor in 
the mandible. The data was collected at the 5-year follow-
up phase after the completion of their treatment.

Multimodal image data (MSCT, IOS, and FS) from 10 
patients were used to create the VP model. These images 
were acquired during an ongoing randomized controlled 
trial taking place at Oost Limburg Hospital, Belgium 
(ethical approval numbers B3712201629565 and S67723) 
testing two types of interceptive orthopedic orthodontic 
appliances for skeletal class III malocclusion in mixed 
dentition. The sample included patients who returned 
for follow-up after interceptive treatment for correct 
cross-bite and Class III malocclusion. Ten additional 
multimodal image data (CBCT, IOS, and FS) of patients 
were acquired during an ongoing interceptive orthopedic 
orthodontic treatment for skeletal class II taking place at 
University Hospital Leuven, Belgium (ethical approval 
number S69363). These malocclusions were character-
ized by a class II molar relationship. Patients with a his-
tory of facial trauma, congenital anomalies, pathologies 
affecting facial contours, and poor-quality images such as 
blurring or excessive artifacts were excluded.

Construction of the AI-driven, AI-refined and 
semiautomatic VP
3D FS images were acquired using the structured light-
based scanner iReal 2E (Scantech, Hangzhou, China) 
according to the manufacturer’s guidelines. Post-pro-
cessing of 3D images was performed using the scan-
ner’s licensed software to capture the entire face and 
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neck, including hair and ears. IOS images were obtained 
using the Emerald S scanner (Planmeca, Helsinki, Fin-
land) and PANDA smart (Freqty Technology, Zhejiang, 
China). Low-dose MSCT scans were acquired using a 
SOMATOM Force scanner (SIEMENS, Munich, Ger-
many) with an acquisition time of 5  s. The low-dose 
MSCT acquisition parameters were set at 150 kilovolt-
age-peak (kVp) and a tube current ranging from 49 to 199 
milliamperes (mA). MSCT scan voxel sizes ranged from 
0.39 × 0.39 × 0.60 mm3 to 0.49 × 0.49 × 0.60 mm3. CBCT 
scans were obtained with a NewTom VGi evo scan-
ner (NewTom, Imola, Italy) with a scan time of 5 s. The 
CBCT acquisition parameters were set at 110 kVp with 
a tube current ranging from 4 to 8  mA and an acquisi-
tion time of 18  s with the voxel size of 0.30 × 0.30 × 0.30 
mm3. Detailed (MS/CB)CT acquisition parameters are 
provided in Supplementary Table 1.

The files were saved in Object File Format (OBJ) for FS, 
Standard Tessellation Language (STL) for IOS, and Digi-
tal Imaging and Communication in Medicine (DICOM) 
for (MS/CB)CT scans. These files were uploaded to the 
Virtual Patient Creator (version 2.2.0, March 2022, Relu 
BV, Leuven, Belgium), an online cloud-based platform 
that enables automatic anatomical segmentation and 
registration (AI-driven) of the maxillofacial complex. 
The AI-driven segmentation of CBCT scans employs 
a validated 3D U-Net type convolutional neural net-
work segmentation model, which incorporates convo-
lutional layers with 4 encoding and 3 decoding blocks, 
each containing 2 convolutions, ReLU activation, group 
normalization, and 8 feature maps [14, 15, 22]. For IOS 
registration, the initial alignment of IOS and CBCT 
models is conducted using deep learning algorithms, fol-
lowed by refinement with an Iterative Closest Point (ICP) 
approach. This process aligns segmented crowns from 
IOS with crowns from CBCT by optimizing transforma-
tions and iteratively minimizing alignment errors until 
convergence is achieved [23]. The registration of the FS 
is based on point prediction across imaging modalities, 
aligned with the segmented (MS/CB)CT. Deep learning 
algorithms are used to predict corresponding points on 
the IOS and FS, identifying these points based on shared 
anatomical or geometric features visible across all three 
modalities. This prediction process ensures spatial con-
sistency of points across different imaging formats. Once 
the corresponding points are identified, the ICP algo-
rithm is applied to minimize the distance between cor-
responding points across modalities, iteratively refining 
the alignment until an optimal match is achieved. The 
merged STL files of the three components or the VP were 
then exported into a single 3D STL model for subsequent 
evaluation.

Semi-automated registration (SAR) and refined auto-
mated registration (AI-refined) were performed using 

Mimics (version 24.0, Materialise N.V., Leuven, Belgium). 
For SAR, (MS/CB)CT scans were imported, and hard tis-
sues, such as bones and teeth, were segmented. The IOS 
and FS were then registered using point-based registra-
tion to align the 3D images with the (MS/CB)CT seg-
mented hard tissue or soft tissue contours. This process 
was followed by surface-based registration, with manual 
adjustments as needed. The process was conducted inde-
pendently by two observers (T.J. and O.B.), who had 
comparable skills and experience in SAR, following prior 
calibration to ensure identical steps for both segmenta-
tion and registration.

Quantitative comparison of VP registration methods: 
accuracy, consistency and time
The accuracy of each registration method was assessed 
by measuring the surface distance between the hard or 
soft tissue outlines on (MS/CB)CT scans and STL files in 
multiplanar reconstruction. Each registration was scored 
from 1 to 3 based on the maximum distance requiring 
correction (1: no correction (< 1  mm), 2: minor correc-
tion (1–3  mm), 3: major correction needed (> 3  mm)). 
Separate scores were given for the upper, middle, and 
lower thirds of the face. Additionally, discrepancies 
among FS, IOS, and (MS/CB)CT in these three areas 
were noted.

To evaluate the consistency of the AI-driven VP, FS, 
IOS, and (MS/CB)CT scans were imported and exported 
twice from the online platform. For the AI-refined and 
SAR methods, two observers (T.J. and O.B.) performed 
a second registration session two weeks after the initial 
registration to assess both inter- and intra-observer reli-
ability. The same methodology used to assess the accu-
racy was used to assess consistency.

The time required for each registration method was 
recorded in seconds. For the AI-driven VP creation, the 
timing started when the DICOM file was opened in the 
Virtual Patient Creator platform and ended when the 
complete VP model was generated. For the AI-refined 
method, the time was recorded in addition to the AI-
driven method, starting from the import of the integrated 
STL files until VP model refinement was completed. For 
the SAR method, both observers (T.J. and O.B.) recorded 
the time from hard tissue segmentation to VP creation. 
The mean registration and total time from both observers 
were used to represent SAR method. Additionally, seg-
mentation time was recorded to calculate the total time 
involved.

Comparison of MSCT and CBCT soft tissue impact on the 
registration
The impact of soft tissue on patient positioning in MSCT 
and CBCT was evaluated by comparing the soft tissue 
surface rendering model from the tomographic scans 
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with the FS. Soft tissue rendering was processed in the 
Mimics software (version 24.0, Materialise, Leuven, 
Belgium) using predefined soft tissue threshold set-
tings (Hounsfield unit: -700 to 225) for MSCT, while an 
adjusted grayscale setting was used for CBCT. For both 
CBCT and MSCT groups, the point-to-point surface 
distance in 3D space was measured between the regis-
tered FS, aligned using either SAR or AI-driven registra-
tion methods, and the corresponding surface rendering 
for each case. In addition, the surface rendering and FS 
from both registration methods were superimposed 
and cropped into three different facial regions: upper 
(from the trichion to nasion landmarks), middle (from 
the nasion to subnasale landmarks), and lower (from the 
subnasal to menton landmarks). The surface distance 
between the surface rendering and the FS was also calcu-
lated for each facial region.

Figure 1 presents a flowchart outlining the virtual 
patient evaluation procedures.

Statistical analysis
To analyze accuracy, the normality of the data distribu-
tion was first tested using Shapiro-wilk test. Since the 
data were not normally distributed, the accuracy results 
of the AI-driven, AI-refined, and SAR methods were 
statistically compared using the Kruskal-Wallis test, 
followed by post-hoc analysis with Bonferroni correc-
tion. Time differences between the three registration 
methods were analyzed using one-way analysis of vari-
ance (ANOVA), while the differences between the two 
observers performing SAR were assessed by independent 

samples t-test. Additionally, a paired sample t-test was 
used to evaluate the consistency of time recordings for 
each method by comparing the AI-driven, AI-refined, 
and SAR methods in pairs.

To evaluate registration consistency, intra- and inter-
observer reliability were calculated for each registra-
tion method. Test-retest reliability was assessed using 
the Spearman correlation coefficient (SCC). Reliabil-
ity results were interpreted according to the criteria of 
Schober et al.: 0-0.1 indicates negligible correlation; 0.1–
0.39 indicates weak correlation; 0.4–0.69 indicates mod-
erate correlation; 0.7–0.89 indicates strong correlation; 
and 0.9-1.00 indicates very strong correlation [24].

For the surface distance analysis, the Shapiro-Wilk 
test was also used to assess data distribution normality. 
Since non-normal distribution was confirmed, Wilcoxon 
matched-pair signed-rank test was used to evaluate the 
distance differences between SAR and AI-driven registra-
tion methods. Friedman’s test was applied to assess dif-
ferences within the same tomographic technique for each 
facial region. The Wilcoxon signed-rank test was used to 
compare different tomographic techniques.

Results
Quantitative comparison of VP registration methods: 
accuracy, consistency and time
As shown in Table  1, no corrections were needed for 
either VP with MSCT or CBCT in the upper and middle 
thirds of the face, indicating 100% accurate registration 
for all three registration methods (p > 0.999). However, in 
the lower facial third, 30% of the VP created with MSCT 

Fig. 1 Flowchart of the virtual patient evaluation procedures
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required no corrections, 60% needed minor corrections, 
and 10% needed major corrections (p > 0.999). In con-
trast, VP with CBCT had more inaccuracies in the lower 
facial third, with 20% requiring no corrections, and 40% 
needing minor and major corrections for all registration 
methods (p > 0.999). There was no statistically significant 
difference in registration accuracy among AI-driven, 
AI-refined, and SAR VP methods for both MSCT and 
CBCT (p > 0.999), nor between VP with MSCT or VP 
with CBCT (p > 0.999). In addition, registration between 
the IOS and (MS/CB)CT was 100% correct for all three 
registration methods, with no statistically significant dif-
ferences observed (p > 0.999).

The registration consistency is also shown in Table  1. 
The consistency for all registration methods was rela-
tively high, with AI-driven and AI-refined registrations 
being the highest for both VP with MSCT and CBCT 
(SCC = 1, p < 0.01). The consistency of SAR was higher for 
VP with MSCT (intra-observer SCC = 0.997-1, p < 0.01; 
inter-observer SCC = 0.997, p < 0.01) compared to CBCT 
(intra-observer SCC = 0.757-1, p < 0.01; inter-observer 
SCC = 0.895, p < 0.01).

For cases with MSCT, the average registration time 
and total time for AI-driven and AI-refined methods 
were both 24.9 s (p > 0.999), while SAR required 242.3 s 
for registration (p < 0.001), with a total time of 313.7  s. 
For cases with CBCT, the average registration time and 
total time for the AI-driven and AI-refined methods were 
28.5 s, showing no statistically significant difference from 
the MSCT cases (p > 0.5). However, the SAR method for 
CBCT cases had a registration time of 275.7 s and a total 
time of 850.3 s, which is statistically significantly longer 
compared to those with MSCT (p < 0.001). When com-
paring the time between two observers, a statistically 
significant difference was found only in the total time for 
CBCT (p < 0.05) (Table 2).

Comparison of MSCT and CBCT soft tissue impact on the 
registration
There was no statistically significant difference in the 
average surface distance between the AI-driven and SAR 
registered FS, and the surface rendering obtained from 
both MSCT and CBCT (p > 0.05). When comparing the 
surface distance across the three facial regions, no statis-
tically significant differences were found for MSCT for 
both AI-driven and SAR registration methods, and for 
CBCT with the AI-driven registration method. However, 
significant differences were observed in the lower third of 
the face compared to other facial regions for the VP with 
CBCT using the SAR method (p < 0.05) (Fig.  2, Supple-
mentary Table 2).

Considering the distances between the two tomo-
graphic scans, MSCT showed a smaller average distance 
to surface rendering compared to CBCT. For the entire Ta
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face, AI-driven registered FS provided a smaller dis-
tance to surface rendering than SAR (p < 0.001). In the 
upper facial region, there was no statistically significant 
difference between MSCT and CBCT surface render-
ing with the registered FS from both registration meth-
ods (p = 0.218). However, a difference was found in the 
middle third of the face for the SAR methods (p = 0.07), 
indicating a greater distance with SAR-registered FS and 
CBCT surface rendering compared to MSCT. Significant 
differences were also observed in the lower facial regions 

for both registration methods, following the same trend 
as the whole full face, with MSCT showing a smaller 
average distance compared to CBCT and AI-driven reg-
istered FS providing a smaller distance to surface render-
ing than SAR (p < 0.001) (Fig. 3, Supplementary Table 2).

Discussion
This study is the first to compare the accuracy and 
efficiency of different tomographic techniques, spe-
cifically MSCT and CBCT, in the context of automated 

Table 2 Comparison of the time required per registration method
Registration methods MSCT CBCT P value MSCT vs. CBCT

Registration time (s) Total time (s) Registration time (s) Total time (s) Registration time (s) Total time (s)
AI-driven 24.9 ± 6.3 24.9 ± 6.3 28.5 ± 4.6 28.5 ± 4.6 0.513 0.513
AI-refined 24.9 ± 6.3 24.9 ± 6.3 28.5 ± 4.6 28.5 ± 4.6 0.513 0.513
Average SAR 242.3 ± 33.5 313.7 ± 32.3 275.7 ± 60.3 850.3 ± 174.0 < 0.001 < 0.001
SAR Observer 2 232.7 ± 30.1 292.2 ± 36.3 242.8 ± 101.8 635.3 ± 134.7
SAR Observer 1 251.9 ± 55.8 335.2 ± 53.1 308.5 ± 53.9 1065.3 ± 407.6

P value P value P value P value
AI-driven vs. SAR < 0.001 < 0.001 < 0.001 < 0.001
AI-refined vs. SAR < 0.001 < 0.001 < 0.001 < 0.001
AI-driven vs. AI-refined > 0.999 > 0.999 > 0.999 > 0.999
Observer 1 vs. Observer 2 0.334 0.063 0.090 0.023
AI: Artificial intelligence, SAR: Semi-automated registration, MSCT: Multislice computed tomography, CBCT: Cone beam computed tomography, vs.: versus, s: 
Seconds

Fig. 2 Distance map between surface rendering and registered facial scan a) Multislice computed tomography (MSCT) surface rendering b) Distance 
map between automatically registered facial scan and MSCT surface rendering c) Distance map between semi-automatically registered facial scan and 
MSCT surface rendering d) Cone beam computed tomography (CBCT) surface rendering e) Distance map between automatically registered facial scan 
and CBCT surface rendering f) Distance map between semi-automatically registered facial scan and CBCT surface rendering, A-C is a 14-year old male 
patient, D-F is a 15-year old female patient
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VP creation, both for quantitative comparison and for 
the effect of soft tissue on the registration of differ-
ent imaging modalities. AI showed good performance 
in terms of accuracy, consistency, and time-efficiency 
in both cases, regardless of the tomographic imaging 
modality, proving to be a possible alternative method 
for creating VP.

Quantitative comparison showed that all three reg-
istration methods could provide clinically acceptable 
registration accuracy in the upper and middle thirds 
of the face for both tomographic imaging modali-
ties. However, more inaccuracies were found in the 
lower third, particularly in the VP with CBCT, which 
required more correction than those with MSCT. 
This discrepancy may be due to differences in patient 
positioning. Patients undergoing MSCT scans are 
positioned supine with a wax bite to obtain optimal 
occlusion. Therefore, not only gravity but also muscle 
tension could affect the lower facial third. In contrast, 
both CBCT and FS were acquired in an upright posi-
tion. The fixation component of CBCT, such as the 
chin rest used for the patients in this study, can influ-
ence the soft tissue profile in the lower third of the 
face, as seen in Supplementary Fig.  1. However, the 
difference in accuracy between the VP created with 
the two tomographic imaging modalities was not sta-
tistically significant, indicating that the effect of grav-
ity may not significantly alter the soft tissue position.

While this study is novel in investigating the accu-
racy of the virtual patient, previous studies have 
validated various steps in the creation of the virtual 
patient, such as the segmentation of anatomical struc-
tures and the registration process, showing high lev-
els of accuracy. However, the integration with the FS 
has not been investigated until now. Considering the 
registration methods, AI can create VP as accurately 

as SAR, but with perfect consistency regardless of dif-
ferent tomographic scans, while the consistency of VP 
created with SAR was better with MSCT. These find-
ings highlight the advantages of AI-driven methods 
in reducing human-induced variability and providing 
more reliable, repeatable results, consistent with the 
previous AI studies [14–18, 22].

Another important clinical finding from this study 
was the time efficiency of the AI-driven method com-
pared to the current clinical standard SAR approach, 
despite requiring some corrections. While the aver-
age registration time using MSCT and CBCT was 
similar, there was a notable difference in the total 
time required, likely due to variations in segmenta-
tion times. This may be due to a clear segmentation 
threshold of a standardized Hounsfield unit for MSCT, 
which allows for precise and consistent segmenta-
tion. In contrast, CBCT relies on grey values, which 
are relative and cannot be standardized, leading to 
grey values variability and increased noise due to fac-
tors like scatter and beam hardening, which can result 
in lower tissue contrast [10, 24]. The conversion of 
these greyscales into pseudo-units can complicate the 
segmentation process, making it more challenging to 
use VP in daily practice due to the process complex-
ity. In the current study, the semi-automated segmen-
tation based on the designated Hounsfield threshold 
resulted in more artifacts in the hard tissue model 
segmented from the CBCT compared to the MSCT 
model. While the voxel size of CBCT in this study is 
smaller than that of MSCT, which theoretically should 
lead to a more precise segmentation model, CBCT is 
more susceptible to inherent noise. When combined 
with the quantitative gray values of the CBCT which 
are not calibrated according to Hounsfield unit, unlike 
MSCT, the semi-automated segmentation is better to 

Fig. 3 Surface distance between (cone beam) computed tomography surface rendering and registered facial scan MSCT: Multislice computed tomog-
raphy, CBCT: Cone beam computed tomography, AI: Artificial intelligence, SAR: Semi-automated registration, SR: Surface rendering, RMS: Root mean 
square error
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MSCT than CBCT. The semi-automated segmentation 
approach on CBCT introduces artifacts that create 
additional challenges during the registration process 
by obscuring portions of the teeth. Nonetheless, it is 
worth noting that these artifacts had no impact on the 
registration accuracy nor on the registration time of 
both AI-driven and SAR approached. This aligns with 
the findings of previous study by Buin et al. [25], which 
confirm the feasibility of CBCT and IOS registration, 
even in the presence of artifacts, with discrepancies 
of less than 0.5  mm. The current results support the 
findings of several previous AI-based studies, showing 
that AI can overcome these complexities and provide 
fast, accurate, and consistent segmentation, regardless 
of the tomographic imaging modalities [22, 26–29]. 
When combined with registration, AI could offer a 
feasible solution for integrating VP into routine clini-
cal workflows. This will not only support personalized 
diagnosis and treatment planning with greater preci-
sion, but it also has the potential to enhance appli-
cations in dental education and to improve patient 
communication and satisfaction.

When considering the effect of soft tissue on regis-
tration, it was expected that gravity would affect the 
soft tissue [30, 31]. However, the difference in surface 
distance between the AI-driven and SAR methods 
was not significant when comparing VP with MSCT 
and CBCT, suggesting that gravity did not have a 
clear effect on soft tissue registration. Similarly, as 
described by Yokoyama et al., gravity does not appear 
to significantly impact brain structure [32]. The SAR 
method exhibited greater variability in surface dis-
tance, especially in the middle and lower thirds of the 
face, particularly with CBCT. This finding highlights 
the importance of the reduction in registration vari-
ability that AI could provide.

The main limitation of this study is the limited size 
and non-homogeneity of the sample, as the MSCT and 
CBCT samples are not identical. However, achieving 
a fully homogeneous patient group is challenging due 
to radiation protection concerns. The selected patients 
were of relative same age and had comparable occlu-
sal conditions. A larger sample size including patients 
with varying skeletal classifications in future studies 
would provide more insightful results on this topic. 
Despite these limitations, this study presents an inno-
vative solution for clinicians to seamlessly integrate VP 
into daily practice. By comparing various methods for 
generating VP, this study ensures that the most accu-
rate and reproducible approach is identified, which is 
essential for widespread adoption in clinical practice. 
Moreover, the AI-driven methods for VP construc-
tion not only ensure accuracy and consistency, but 

also reduce human-induced variability, making them a 
practical choice for routine clinical use.

Conclusions
AI enables fast, accurate, and consistent VP creation 
through multimodal registration of hard and intra-oral 
as well as extra-oral soft tissues. AI-driven, AI-refined, 
and SAR methods can all achieve high accuracy in cre-
ating VP using either MSCT or CBCT, though CBCT 
tends to show more discrepancies. Additionally, soft 
tissue registration showed no significant differences 
between MSCT and CBCT, suggesting both are equally 
reliable for VP.
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